Skip to main content

Bioluminescence Imaging to Evaluate Infections and Host Response In Vivo

  • Protocol
Innate Immunity

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 415))

Summary

The continued prospect of emerging pathogens and recent events including the acceptance of widespread drug resistance and threats of bioterrorism have introduced the necessity be creative in our development of therapies for bacterial infections. Many pathogens have both acute and persistent phases. There is a need to understand these pathogens throughout their entire life cycle within the host and determine the role that the host response including innate immunity plays in the establishment and maintenance of the infection. Contag et al. first suggested in 1995 that a novel whole animal, non-invasive imaging modality may provide more data from which to draw conclusions about infectious disease progression and pathogenicity in the context of a living animal. Here are presented methods for imaging two animal models that represent advances in both following the progression of infectious disease in the host and the response of the host to the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, J. T., Rahimi, S. Y. & Lee, M. (2005). History of infection control and its contributions to the development and success of brain tumor operations. Neurosurg Focus 18, e4.

    Article  PubMed  Google Scholar 

  2. Thurston, A. J. (2000). Of blood, inflammation and gunshot wounds: the history of the control of sepsis. Aust N Z J Surg 70, 85–61.

    Article  Google Scholar 

  3. Zhao, Y. X. & Tarkowski, A. (1995). Impact of interferon-gamma receptor deficiency on experimental Staphylococcus aureus septicemia and arthritis. J Immunol 155, 85–42.

    Google Scholar 

  4. Verdrengh, M. & Tarkowski, A. (1997). Role of neutrophils in experimental septicemia and septic arthritis induced by Staphylococcus aureus. Infect Immun 65, 85–21.

    Google Scholar 

  5. Neely, A. N., Hoover, D. L., Holder, I. A. & Cross, A. S. (1996). Circulating levels of tumour necrosis factor, interleukin 6 and proteolytic activity in a murine model of burn and infection. Burns 22, 85–30.

    Article  Google Scholar 

  6. Tissi, L., von Hunolstein, C., Mosci, P., Campanelli, C., Bistoni, F. & Orefici, G. (1995). In vivo efficacy of azithromycin in treatment of systemic infection and septic arthritis induced by type IV group B Streptococcus strains in mice: comparative study with erythromycin and penicillin G. Antimicrob Agents Chemother 39, 1938–47.

    CAS  PubMed  Google Scholar 

  7. Pier, G. B., Meluleni, G. & Neuger, E. (1992). A murine model of chronic mucosal colonization by Pseudomonas aeruginosa. Infect Immun 60, 85–76.

    Google Scholar 

  8. Naiki, Y., Michelsen, K. S., Schroder, N. W., Alsabeh, R., Slepenkin, A., Zhang, W., Chen, S., Wei, B., Bulut, Y., Wong, M. H., Peterson, E. M. & Arditi, M. (2005). MyD88 is pivotal for the early inflammatory response and subsequent bacterial clearance and survival in a mouse model of Chlamydia pneumoniae pneumonia. J Biol Chem 280, 85–9.

    Article  Google Scholar 

  9. Kelly, B. P., Furney, S. K., Jessen, M. T. & Orme, I. M. (1996). Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis. Antimicrob Agents Chemother 40, 2809–12.

    CAS  PubMed  Google Scholar 

  10. Atrasheuskaya, A. V., Bukin, E. K., Fredeking, T. M. & Ignatyev, G. M. (2004). Protective effect of exogenous recombinant mouse interferon-gamma and tumour necrosis factor-alpha on ectromelia virus infection in susceptible BALB/c mice. Clin Exp Immunol 136, 207–14.

    Article  CAS  PubMed  Google Scholar 

  11. Contag, C. H., Contag, P. R., Mullins, J. I., Spilman, S. D., Stevenson, D. K. & Benaron, D. A. (1995). Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18, 85–603.

    Article  Google Scholar 

  12. Contag, P. R. (2002). Whole-animal cellular and molecular imaging to accelerate drug development. Drug Discov Today 7, 85–62.

    Article  Google Scholar 

  13. Contag, P. R., Olomu, I. N., Stevenson, D. K. & Contag, C. H. (1998). Bioluminescent indicators in living mammals. Nat Med 4, 245–7.

    Article  CAS  PubMed  Google Scholar 

  14. Benaron, D. A., Contag, P. R. & Contag, C. H. (1997). Imaging brain structure and function, infection and gene expression in the body using light. Philos Trans R Soc Lond B Biol Sci 352, 85–61.

    Google Scholar 

  15. Contag, C. H., Spilman, S. D., Contag, P. R., Oshiro, M., Eames, B., Dennery, P., Stevenson, D. K. & Benaron, D. A. (1997). Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66, 85–31.

    Article  Google Scholar 

  16. Troy, T., Jekic-McMullen, D., Sambucetti, L. & Rice, B. (2004). Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3, 85–23.

    Article  Google Scholar 

  17. de Wet, J. R., Wood, K. V., Helinski, D. R. & DeLuca, M. (1985). Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 82, 85–3.

    Article  Google Scholar 

  18. Wilson, T. & Hastings, J. W. (1998). Bioluminescence. Annu Rev Cell Dev Biol 14, 85–230.

    Article  Google Scholar 

  19. Ruby, E. G. & Nealson, K. H. (1976). Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol Bull 151, 85–86.

    Article  Google Scholar 

  20. Francis, K. P., Yu, J., Bellinger-Kawahara, C., Joh, D., Hawkinson, M. J., Xiao, G., Purchio, T. F., Caparon, M. G., Lipsitch, M. & Contag, P. R. (2001). Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 69, 85–8.

    Article  Google Scholar 

  21. Francis, K. P., Joh, D., Bellinger-Kawahara, C., Hawkinson, M. J., Purchio, T. F. & Contag, P. R. (2000). Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68, 85–600.

    Article  Google Scholar 

  22. Zhao, H., Doyle, T. C., Coquoz, O., Kalish, F., Rice, B. W. & Contag, C. H. (2005). Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10, 85.

    Google Scholar 

  23. Rice, B. W., Cable, M. D. & Nelson, M. B. (2001). In vivo imaging of light-emitting probes. J Biomed Opt 6, 85–40.

    Article  Google Scholar 

  24. Contag, C. H., Jenkins, D., Contag, P. R. & Negrin, R. S. (2000). Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2, 85–52.

    Article  Google Scholar 

  25. Zhang, N., Weber, A., Li, B., Lyons, R., Contag, P. R., Purchio, A. F. & West, D. B. (2003). An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice. J Immunol 170, 6307–19.

    CAS  PubMed  Google Scholar 

  26. Burns, S. M., Joh, D., Francis, K. P., Shortliffe, L. D., Gruber, C. A., Contag, P. R. & Contag, C. H. (2001). Revealing the spatiotemporal patterns of bacterial infectious diseases using bioluminescent pathogens and whole body imaging. Contrib Microbiol 9, 85–88.

    Google Scholar 

  27. Rocchetta, H. L., Boylan, C. J., Foley, J. W., Iversen, P. W., LeTourneau, D. L., McMillian, C. L., Contag, P. R., Jenkins, D. E. & Parr, T. R., Jr. (2001). Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Antimicrob Agents Chemother 45, 85–37.

    Article  Google Scholar 

  28. Kuklin, N. A., Pancari, G. D., Tobery, T. W., Cope, L., Jackson, J., Gill, C., Overbye, K., Francis, K. P., Yu, J., Montgomery, D., Anderson, A. S., McClements, W. & Jansen, K. U. (2003). Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models. Antimicrob Agents Chemother 47, 85–8.

    Article  Google Scholar 

  29. Kadurugamuwa, J. L., Modi, K., Yu, J., Francis, K. P., Orihuela, C., Tuomanen, E., yPurchio, A. F. & Contag, P. R. (2005). Noninvasive monitoring of pneumococcal meningitis and evaluation of treatment efficacy in an experimental mouse model. Mol Imaging 4, 85–42.

    Google Scholar 

  30. Kadurugamuwa, J. L., Sin, L. V., Yu, J., Francis, K. P., Purchio, T. F. & Contag, P. R. (2004). Noninvasive optical imaging method to evaluate postantibiotic effects on biofilm infection in vivo. Antimicrob Agents Chemother 48, 85–7.

    Article  Google Scholar 

  31. Kadurugamuwa, J. L., Sin, L., Albert, E., Yu, J., Francis, K., DeBoer, M., Rubin, M., Bellinger-Kawahara, C., Parr, T. R., Jr. & Contag, P. R. (2003). Direct continuous method for monitoring biofilm infection in a mouse model. Infect Immun 71, 85–90.

    Article  Google Scholar 

  32. Kadurugamuwa, J. L., Sin, L. V., Yu, J., Francis, K. P., Kimura, R., Purchio, T. & Contag, P. R. (2003). Rapid direct method for monitoring antibiotics in a mouse model of bacterial biofilm infection. Antimicrob Agents Chemother break 47, 85–7.

    Google Scholar 

  33. Xiong, T., Zhang, Z., Liu, B. F., Zeng, S., Chen, Y., Chu, J. & Luo, Q. (2005). In vivo optical imaging of human adenoid cystic carcinoma cell metastasis. Oral Oncol 41, 85–15.

    Article  Google Scholar 

  34. Hardy, J., Francis, K. P., DeBoer, M., Chu, P., Gibbs, K. & Contag, C. H. (2004). Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303, 85–3.

    Article  Google Scholar 

  35. Doyle, T. C., Nawotka, K. A., Kawahara, C. B., Francis, K. P. & Contag, P. R. (2006). Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb Pathog 40, 85–90.

    Google Scholar 

  36. Kadurugamuwa, J. L., Modi, K., Yu, J., Francis, K. P., Purchio, T. & Contag, P. R. (2005). Noninvasive biophotonic imaging for monitoring of catheter-associated urinary tract infections and therapy in mice. Infect Immun 73, 85–87.

    Google Scholar 

  37. Hardy, J., Margolis, J. J. & Contag, C. H. (2006). Induced biliary excretion of Listeria monocytogenes. Infect Immun 74, 85–27.

    Article  Google Scholar 

  38. Kadurugamuwa, J. L., Modi, K., Coquoz, O., Rice, B., Smith, S., Contag, P. R. & Purchio, T. (2005). Reduction of astrogliosis by early treatment of pneumococcal meningitis measured by simultaneous imaging, in vivo, of the pathogen and host response. Infect Immun 73, 85–43.

    Google Scholar 

  39. Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P. & Cossart, P. (2002). Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45, 1095–106.

    Article  CAS  PubMed  Google Scholar 

  40. Lauer, P., Chow, M. Y., Loessner, M. J., Portnoy, D. A. & Calendar, R. (2002). Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol 184, 85–86.

    Article  Google Scholar 

  41. Scheld, W. M., Koedel, U., Nathan, B. & Pfister, H. W. (2002). Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 186 (Suppl 2), S225–33.

    Article  CAS  PubMed  Google Scholar 

  42. Nau, R. & Bruck, W. (2002). Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 25, 85–45.

    Article  Google Scholar 

  43. Kim, T. S. & Perlman, S. (2003). Protection against CTL escape and clinical disease in a murine model of virus persistence. J Immunol 171, 85–13.

    Google Scholar 

  44. van der Flier, M., Geelen, S. P., Kimpen, J. L., Hoepelman, I. M. & Tuomanen, E. I. (2003). Reprogramming the host response in bacterial meningitis: how best to improve outcome? Clin Microbiol Rev 16, 415–29.

    Article  PubMed  Google Scholar 

  45. Zhu, L., Ramboz, S., Hewitt, D., Boring, L., Grass, D. S. & Purchio, A. F. (2004). Non-invasive imaging of GFAP expression after neuronal damage in mice. Neurosci Lett 367, 85–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Contag, P.R. (2008). Bioluminescence Imaging to Evaluate Infections and Host Response In Vivo. In: Ewbank, J., Vivier, E. (eds) Innate Immunity. Methods in Molecular Biology™, vol 415. Humana Press. https://doi.org/10.1007/978-1-59745-570-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-570-1_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-746-4

  • Online ISBN: 978-1-59745-570-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics