Skip to main content

Microengineered Neural Probes for In Vivo Recording

  • Protocol
  • First Online:
Microengineering in Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 583))

Abstract

One of the great challenges facing medicine is the repair of the damaged nervous system. Due to the limited capacity of the central (and to a lesser extent the peripheral) nervous systems to regenerate, damage such as spinal cord injury can often result in permanent paralysis. Researchers are attempting to overcome nerve injury by devising methods of sensing neural activity either in the brain or in the spinal cord or peripheral nervous system. This information can act as a control mechanism for either muscle stimulators (e.g. for restoring limb function) or providing function in some other way (such as controlling a cursor on a computer screen). Ideally, sensing devices are implanted into the body, directly accessing the nervous system. Whilst great advancements have been made in implantable neural stimulators, sensing of neural activity has proven to be a more difficult task. This chapter describes how microengineered probes allow construction of neuron-sized neural interfaces for enhanced recording in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hausser, M. (2000). The Hodgkin-Huxley theory of the action potential. Nature Neuroscience 3: 1165.

    Article  CAS  Google Scholar 

  2. Cole, K. and H. Curtis (1939). Electric Impedance of the squid giant axon during activity. Journal of General Physiology 22: 649–670.

    Article  CAS  Google Scholar 

  3. Hodgkin, A. and A. Huxley (1939). Action potentials recorded from inside a nerve fibre. Nature 144: 710–712.

    Article  Google Scholar 

  4. Hodgkin, A. and B. Katz (1949). Journal of Physiology 108: 37–77.

    CAS  Google Scholar 

  5. Hodgkin, A. and A. Huxley (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117: 500–544.

    Google Scholar 

  6. Avery, R. (1973). Implantable nerve stimulating electrode. U.S.A., U.S. Patent #3,774,618.

    Google Scholar 

  7. Hagfors, N. (1972). Implantable electrode. U.S.A., U.S. Patent #3,654,933.

    Google Scholar 

  8. Popovic, D., R. Stein, K. Jovanovic, R. Dai, A. Kostov and W. Armstroing (1993). Sensory nerve recordin for closed-loop control to restore motor functions. IEEE Transactions on Biomedical Engineering 40(10): 1024–1031.

    Article  CAS  Google Scholar 

  9. Naples, G., J. Sweeney and J. Mortimer (1986). Implantable cuff, method of manufacture, and method of installation. United States Patent. USA, No. 4,602,624.

    Google Scholar 

  10. Klepinski, R. (1994). Implantable neural electrode. USA, #5,282,486.

    Google Scholar 

  11. Sahin, M. and D. Durand (1998). Improved nerve cuff electrode recordings with subthreshold anodic currents. IEEE Transactions on Biomedical Engineering 45(8): 1044–1050.

    Article  CAS  Google Scholar 

  12. Takeuchi, S. and I. Shimoyama (1999). Wireless recording of insect neural activity with an SMA microelectrode. Proceedings of The First Joint BMES/EMBS Conference Serving Humanity, Advancing Technology, Atlanta, USA, IEEE.

    Google Scholar 

  13. Jezernik, S. and T. Sinkjaer (1999). On statistical properties of whole nerve cuff recording. IEEE Transactions on Biomedical Engineering 46(10): 1240–1245.

    Article  CAS  Google Scholar 

  14. Nakatani, H., T. Watanbe and N. Hoshimiya (2001). Detection of nerve action potentials under low signal-to-noise ratio condition. IEEE Transactions on Biomedical Engineering 48(8): 845–849.

    Article  CAS  Google Scholar 

  15. Jensen, W., S. Lawrence, R. Riso and T. Sinkjaer (2001). Effect of initial joint position on nerve-cuff recordings of muscle afferents in rabbits. IEEE Transactions on Neural Systems and Rehabilitation Engineering 9(3): 265–273.

    Article  CAS  Google Scholar 

  16. Hoffer, J. and K. Kallesoe (2001). How to use nerve cuffs to stimulate, record or modulate neural activity. In: Neural Prostheses for Restoration of Sensory and Motor Function. J. K. Chapin (ed.), CRC Press, 139–175.

    Google Scholar 

  17. Edell, D., J. Churchill and I. Gourley (1982). Biocompatibility of a silicon based peripheral nerve electrode. Biomaterials, Medical Devices, and Artificial. 103–122.

    Google Scholar 

  18. Akin, T., K. Najafi, R. Smoke and R. Bradley (1994). A micromachined silicon sieve electrode for nerve regeneration applications. IEEE Transactions on Biomedical Engineering 41(4): 305–315.

    Article  CAS  Google Scholar 

  19. Kovacs , G. (1990). Technology Development for a Chronic Neural Interface. Electrical Engineering, Stanford University.

    Google Scholar 

  20. Mannard, A., R. Stein and D. Charles (1974). Regeneration electrode units: Implants for recording from single peripheral nerve fibers in freely moving animals. Science 183: 547–549.

    Article  CAS  Google Scholar 

  21. Kovacs, G., C. Storment, et al. (1994). Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves. IEEE Transactions on Biomedical Engineering 41(6).

    Article  Google Scholar 

  22. Wallman, L., Y. Zhang, T. Laurell and N. Danielsen (2001). The geometric design of micromachined silicon sieve electrodes influences functional nerve regeneraion. Biomaterials 22: 1187–1193.

    Article  CAS  Google Scholar 

  23. Stieglitz, T., H. Ruf, M. Gross, M. Schuettler and U. Meyer (2002). A biohybrid system to inteface peripheral nerves after traumatic lesions: design of a high channel sieve electrode. Biosensors and Bioelectronics, 1–12.

    Google Scholar 

  24. Williams, J., R. Rennaker and D. Kipke (1999). Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Research Protocols 4: 303–313.

    Article  CAS  Google Scholar 

  25. Grundfest, H., R. Sengstaken and W. Oettinger (1950). Stainless steel micro-needle electrodes made by electrolytic pointinc. Physical Instruments for the Biologist 21(4): 360–361.

    Google Scholar 

  26. Kruger, J. (1983). Simultaneous individual recordings from many cerebral neurons: techniques and results. Reviews of Physiology, Biochemistry & Pharmacology 98: 177–233.

    Article  CAS  Google Scholar 

  27. Gross, G., E. Rieske, G. Kreutzberg and A. Meyer (1977). A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neuroscience Letters 6: 101–106.

    Article  CAS  Google Scholar 

  28. Pine, J. (1980). Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods 2: 19–32.

    Article  CAS  Google Scholar 

  29. Pickard, R., A. Collins, P. Joseph and R. Hicks (1979). A flexible printed circuit probe for electrophysiology. Medical and Biological Engineering Computing 17: 261–267.

    Article  CAS  Google Scholar 

  30. Wise, K., J. Angell and A. Starr (1970). An integrated-circuit approach to extracellular microelectrodes. IEEE Transaction on Bio-medical Engineering BME-17(3): 238, 247.

    Article  Google Scholar 

  31. Wise, K. and J. Angell (1975). A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Transactions on Biomedical Enginnering BME-22(3): 212, 219.

    Article  Google Scholar 

  32. Prohaska, O., F. Olcaytug, K. Womastek and H. Petsche (1977). A multielectrode for intracortical recordings produced by thin-film technology. Electroencephalography and Clinical Neurophysiology 42: 421–422.

    Article  CAS  Google Scholar 

  33. Ensell, G., Banks, D.J., Richards, P.R., Balachandran, W. and Ewins, D.J. (2000). Silicon based microelectroes for neurophysiliogy, micromachined from silicon-on-insulator wafers. Medical and Biological Engineering Computing 38 175–179.

    Article  CAS  Google Scholar 

  34. Bai, Q. and K. Wise (2001). Single-unit neural recording with active microelectrode array. IEEE Transactions on Biomedical Engineering 48(8): 911–920.

    Article  CAS  Google Scholar 

  35. Xu, C., W. Lemon and C. Liu (2002). Design and fabrication of a high-density metal microelectrode array for neural recording. Sensor and Actuators A 96: 78–85.

    Article  Google Scholar 

  36. McNaughton, T. and K. Horch (1996). Metallized polymer fibers as leadwires and intrafascicular microelectrodes. Journal of Neuroscience Methods 70: 103–110.

    Article  CAS  Google Scholar 

  37. Nordhausen, C., E. Maynard and R. Normann (1996). Single unit recording capabilites of a 100 microelectrode array. Brain Research 726: 129–140.

    Article  CAS  Google Scholar 

  38. Maynard, E., T. Nordhausen and R. Normann (1997). The Utah Intracortical Electrode Array: A recording structure for potential brain-computer interfaces. Electroencephalography and Clinical Neurophysiology 102: 228–239.

    Article  CAS  Google Scholar 

  39. Rousche, P. and R. Normann (1998). Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. Journal of Neuroscience Methods 82(1): 1–15.

    Article  CAS  Google Scholar 

  40. Stieglitz, T. and M. Gross (2002). Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems. Sensors and Actuators B 83: 8–14.

    Article  Google Scholar 

  41. Kawano, T., Y. Kato, M. Futagawa, H. Takao, K. Sawada and M. Ishida (2002). Fabrication and properties of ultrasmall Si wire arrays with circuits by vapor-liquid-solid growth. Sensor and Actuators A: 1–7.

    Google Scholar 

  42. Yoon, T., E. Hwang, D. Shin, S. Park, S. Oh, S. Jung, H. Shin and S. Kim (2002). A micromachined silicon depth probe for multichannel neural recording. IEEE Transactions on Biomedical Engineering 47(8): 1082–1087.

    Article  Google Scholar 

  43. Kim, J. H., Manuelidis, E. E., Glenn, W. W., Fukuda, Y., Cole, D. S. and Hogan, J. F. (1983) Light and electron microscopic studies of phrenic nerves after long-term electrical stimulation. Journal of Neurosurgery 58, 84–91.

    Article  CAS  Google Scholar 

  44. Heiduschka, P. and S. Tanos (1998). Implantable bioelectronic interfaces for lost nerve functions. Progress in Neurobiology 55(5): 433–461.

    Article  CAS  Google Scholar 

  45. Ferris, C. (1974). Introduction to Bioelectrodes, Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Valles, K.D.B. (2010). Microengineered Neural Probes for In Vivo Recording. In: Hughes, M., Hoettges, K. (eds) Microengineering in Biotechnology. Methods in Molecular Biology, vol 583. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-106-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-106-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-381-7

  • Online ISBN: 978-1-60327-106-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics