Skip to main content

Evaluation of Promoters for Use in Tissue-Specific Gene Delivery

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 434))

Summary

Vectors used in gene therapy require an expression cassette. The expression cassette consists of three important components: promoter, therapeutic gene and polyadenylation signal. The promoter is essential to control expression of the therapeutic gene. A tissue-specific promoter is a promoter that has activity in only certain cell types. Use of a tissue-specific promoter in the expression cassette can restrict unwanted transgene expression as well as facilitate persistent transgene expression. Therefore, choosing the correct promoter, especially a tissue-specific promoter, is a major step toward achieving successful therapeutic transgene expression. Ideally, the elements of the natural promoter region, necessary for obtaining the required level of the gene expression while retaining tissue-specificity, should be known. Also, it is important to understand whether interactions occur between the promoter region and the rest of the vector genome that could affect promoter activity and specificity. To assess this, it is helpful to select a suitable vector system that will be used in further gene therapy studies. Second, have one or several candidate tissue-specific promoters available for use. Third, ideally have an in vitro cell model suitable to evaluate tissue-specificity. Fourth, have a convenient in vivo animal model to use. Fifth, select a good reporter gene system. Next, using conventional recombinant DNA techniques create different promoter constructs with the selected vector system. Lastly, have a suitable transfection method to test the plasmid constructs in both the in vitro and the in vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eloranta, J.J. and Goodbourn, S. (1996) Positive and negative regulation of RNA polymerase II transcription. In Eukaryotic Gene Transcription (Goodbourn, J.J., ed.), Oxford University Press, Walton Street, Oxford, pp. 1–33.

    Google Scholar 

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. andWalter, P. (2002) Molecular Biology of the Cell. GarlandScience, New York, NY.

    Google Scholar 

  3. Majumder, S. and DePamphilis, M.L. (1994) TATA-dependent enhancerstimulation of promoter activity in mice is developmentallyacquired. Mol. Cell. Biol. 14, 4258–4268.

    CAS  PubMed  Google Scholar 

  4. Zheng, C., Hoque, A.T., Braddon, V.R., Baum, B.J., and O’Connell,B.C. (2001) Evaluation of salivary gland acinar and ductalcell-specific promoters in vivo with recombinant adenoviral vectors.Hum. Gene. Ther. 12, 2215–2223.

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, C. and Baum, B.J. (2005) Evaluation of viral and mammalianpromoters for use in gene delivery to salivary glands. Mol.Ther. 12, 528–536.

    Article  CAS  PubMed  Google Scholar 

  6. Baum, B.J., Wellner, R.B., and Zheng, C. (2002) Gene transfer tosalivary gland. Int. Rev. Cytol. 213, 93–146.

    Article  CAS  PubMed  Google Scholar 

  7. Mastrangeli, A., O’Connell, B., Aladib, W., Fox, P.C., Baum, B.J.,and Crystal, R.G. (1994) Direct in vivo adenovirus-mediated genetransfer to salivary glands. Am. J. Physiol. 266, G1146–G1155.

    CAS  PubMed  Google Scholar 

  8. Delporte, C., Redman, R.S., and Baum, B.J. (1997) Relationshipbetween the cellular distribution of the alpha(v)beta3/5 integrinsand adenoviral infection in salivary glands. Lab. Invest. 77, 167–173.

    CAS  PubMed  Google Scholar 

  9. Baum, B.J., Wang, S., Cukierman, E., Delporte, C., Kagami, H.,Marmary, Y., Fox, P.C., Mooney, D.J., and Yamada, K.M. (1999) Re-engineering the functions of a terminally differentiatedepithelial cell in vivo. Ann. N.Y. Acad. Sci. 875, 294–300.

    Article  CAS  PubMed  Google Scholar 

  10. Moll, R., Franke, W.W., Schiller, D.L., Geiger, B., and Krepler, R. (1982) The catalog of human cytokeratins: patterns of expression innormal epithelia, tumors and cultured cells. Cell. 31, 11–24.

    Article  CAS  PubMed  Google Scholar 

  11. Chow, Y.H., O’Brodovich, H., Plumb, J., Wen, Y., Sohn, K.J., Lu, Z.,Zhang, F., Lukacs, G.L., Tanswell, A.K., Hui, C.C., Buchwald, M.,and Hu, J. (1997) Development of an epithelium-specific expressioncassette with human DNA regulatory elements for transgene expressionin lung airways. Proc. Natl. Acad. Sci. U.S.A. 94, 14695–14700.

    Article  CAS  PubMed  Google Scholar 

  12. Brembeck, F.H. and Rustgi, A.K. (2000) The tissue-dependent keratin19 gene transcription is regulated by GKLF/KLF4 and Sp1. J.Biol. Chem. 275, 28230–28239.

    CAS  PubMed  Google Scholar 

  13. Kagaya, M., Kaneko, S., Ohno, H., Inamura, K., and Kobayashi, K. (2001) Cloning and characterization of the 5′;-flanking region ofhuman cytokeratin 19 gene in human cholangiocarcinoma cell line.J. Hepatol. 35, 504–511.

    Article  CAS  PubMed  Google Scholar 

  14. Ting, C.N., Rosenberg, M.P., Snow, C.M., Samuelson, L.C., andMeisler, M.H. (1992) Endogenous retroviral sequences are requiredfor tissue-specific expression of a human salivary amylase gene.Genes Dev. 6, 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  15. He, X., Tse, C.M., Donowitz, M., Alper, S.L., Gabriel, S.E., andBaum, B.J. (1997) Polarized distribution of key membrane transportproteins in the rat submandibular gland. Pflugers Arch. 433, 260–268.

    Article  CAS  PubMed  Google Scholar 

  16. Brown, A.M., Rusnock, E.J., Sciubba, J.J., and Baum, B.J. (1989) Establishment and characterization of an epithelial cell line fromthe rat submandibular gland. J. Oral. Pathol. Med. 18, 206–213.

    Article  CAS  PubMed  Google Scholar 

  17. Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from humanadenovirus type 5. J. Gen. Virol. 36, 59–74.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, X., Wu, J.M., Hornischer, K., Kel, A., and Wingender, E. (2006) TiProD: the tissue-specific promoter database. NucleicAcids Res. 34, D104–D107.

    Article  CAS  Google Scholar 

  19. Borok, Z., Li, X., Fernandes, V.F., Zhou, B., Ann, D.K., andCrandall, E.D. (2000) Differential regulation of rat aquaporin-5promoter/enhancer activities in lung and salivary epithelialcells. J. Biol. Chem. 275, 26507–26514.

    Article  CAS  PubMed  Google Scholar 

  20. Henikoff, S. (1984) Unidirectional digestion with exonuclease IIIcreates targeted breakpoints for DNA sequencing. Gene. 28, 351–359.

    Article  CAS  PubMed  Google Scholar 

  21. Putney, S.D., Benkovic, S.J., and Schimmel, P.R. (1981) A DNAfragment with an alpha-phosphorothioate nucleotide at one end isasymmetrically blocked from digestion by exonuclease III and can bereplicated in vivo. Proc. Natl. Acad. Sci. U.S.A. 78, 7350–7354.

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook, J. and Russell, D.W. (eds.) (2001) Molecular CloningA Laboratory Manual. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  23. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Scidman,J.G., Smith, J.A., and Struhl, K. (eds.) (2006) CurrentProtocols in Molecular Biology. Harvard Medical School.John Wiley Sons, Inc.

    Google Scholar 

  24. McGrory, W.J., Bautista, D.S., and Graham, F.L. (1988) A simpletechnique for the rescue of early region I mutations into infectioushuman adenovirus type 5. Virology 163, 614–617.

    Article  CAS  PubMed  Google Scholar 

  25. Bundschu, K., Gattenlohner, S., Knobeloch, K.P., Walter, U., andSchuh, K. (2006) Tissue-specific Spred-2 promoter activitycharacterized by a gene trap approach. Gene Expr. Patterns 6, 247–255.

    Article  CAS  PubMed  Google Scholar 

  26. Bohwan, J., Seong, J.K., and Ryu, D.Y. (2005) Tissue-specific andDe Novo promoter methylation of the mouse glucose transporter2. Biol. Pham. Bull. 28, 2054–2057.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Biman Paria and Gabor Racz for their careful reading of, and helpful comments on, an earlier version of this manuscript. Our research is supported by the Division of Intramural Research, National Institute of Dental and Craniofacial Research NIH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zheng, C., Baum, B.J. (2008). Evaluation of Promoters for Use in Tissue-Specific Gene Delivery. In: Le Doux, J.M. (eds) Gene Therapy Protocols. Methods in Molecular Biology™, vol 434. Humana Press. https://doi.org/10.1007/978-1-60327-248-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-248-3_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-247-6

  • Online ISBN: 978-1-60327-248-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics