Skip to main content

Current Trends in Liposome Research

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 605))

Abstract

Among the several drug delivery systems, liposomes – phospholipid nanosized vesicles with a bilayered membrane structure – have drawn a lot of interest as advanced and versatile pharmaceutical carriers for both low and high molecular weight pharmaceuticals. At present, liposomal formulations span multiple areas, from clinical application of the liposomal drugs to the development of various multifunctional liposomal systems to be used in therapy and diagnostics. This chapter provides a brief overview of various liposomal products currently under development at experimental and preclinical level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lasic DD (1993) Liposomes from physics to applications. Elsevier, Amsterdam

    Google Scholar 

  2. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  PubMed  CAS  Google Scholar 

  3. Lasic DD, Papahadjopoulos D (eds) (1998) Medical applications of liposomes. Elsevier, New York

    Google Scholar 

  4. Connor J, Yatvin MB, Huang L (1984) pH-Sensitive liposomes: Acid-induced liposome fusion. Proc Natl Acad Sci USA 81:1715–1718

    Article  PubMed  CAS  Google Scholar 

  5. Lasic DD et al (1992) Gelation of liposome interior. A novel method for drug encapsulation. FEBS Lett 312:255–258

    Article  PubMed  CAS  Google Scholar 

  6. Lasic DD, Martin F (eds) (1995) Stealth liposomes. CRC Press, Boca Raton

    Google Scholar 

  7. Woodle MC, Storm G (eds) (1998) Long circulating liposomes: Old drugs, new therapeutics. Springer, Berlin

    Google Scholar 

  8. Torchilin VP, Weissig V (eds) (2003) Liposomes: A practical approach, Oxford University Press, Oxford, New York

    Google Scholar 

  9. Gregoriadis G (ed) (2007) Liposome technology: Liposome preparation and related techniques. Taylor & Francis, London, UK

    Google Scholar 

  10. Drummond DC et al (1999) Optimizing liposomes for delivery of chemotherapeutic agents wto solid tumors. Pharmacol Rev 51:691–743

    PubMed  CAS  Google Scholar 

  11. Papahadjopoulos D et al (1991) Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464

    Article  PubMed  CAS  Google Scholar 

  12. Senior JH (1987) Fate and behavior of liposomes in vivo: A review of controlling factors. Crit Rev Ther Drug Carrier Syst 3:123–193

    PubMed  CAS  Google Scholar 

  13. Zamboni WC (2005) Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin Cancer Res 11:8230–8234

    Article  PubMed  CAS  Google Scholar 

  14. Laverman P et al (2001) Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther 298:607–612

    PubMed  CAS  Google Scholar 

  15. Litzinger DC, Buiting AM, van Rooijen N, Huang L (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta 1190:99–107

    Article  PubMed  CAS  Google Scholar 

  16. Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: Effect of dose. Biochim Biophys Acta 1068:133–141

    Article  PubMed  CAS  Google Scholar 

  17. Alberts DS et al (2004) Efficacy and safety of liposomal anthracyclines in phase I/II clinical trials. Semin Oncol 31:53–90

    Article  PubMed  CAS  Google Scholar 

  18. Allen TM, Martin FJ (2004) Advantages of liposomal delivery systems for anthracyclines. Semin Oncol 31:5–15

    Article  PubMed  CAS  Google Scholar 

  19. Bedikian AY et al (2006) Pharmacokinetics and urinary excretion of vincristine sulfate liposomes injection in metastatic melanoma patients. J Clin Pharmacol 46:727–737

    Article  PubMed  CAS  Google Scholar 

  20. Semple SC et al (2005) Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J Pharm Sci 94:1024–1038

    Article  PubMed  CAS  Google Scholar 

  21. Tardi P et al (2000) Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. Cancer Res 60:3389–3393

    PubMed  CAS  Google Scholar 

  22. Seiden MV et al (2004) A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol Oncol 93:229–232

    Article  PubMed  CAS  Google Scholar 

  23. Duffaud F et al (2004) Phase II study of OSI-211 (liposomal lurtotecan) in patients with metastatic or loco-regional recurrent squamous cell carcinoma of the head and neck. An EORTC New Drug Development Group study. Eur J Cancer 40:2748–2752

    PubMed  CAS  Google Scholar 

  24. Lu C et al (2005) Phase II study of a liposome-entrapped cisplatin analog (L-NDDP) administered intrapleurally and pathologic response rates in patients with malignant pleural mesothelioma. J Clin Oncol 23:3495–3501

    Article  PubMed  CAS  Google Scholar 

  25. Ugwu S et al (2005) Preparation, characterization, and stability of liposome-based formulations of mitoxantrone. Drug Dev Ind Pharm 31:223–229

    Article  PubMed  CAS  Google Scholar 

  26. Zhang JA et al (2005) Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm 59:177–187

    Article  PubMed  CAS  Google Scholar 

  27. Lei S et al (2004) Enhanced therapeutic efficacy of a novel liposome-based formulation of SN-38 against human tumor models in SCID mice. Anticancer Drugs 15:773–778

    Article  PubMed  CAS  Google Scholar 

  28. Pal A et al (2005) Preclinical safety, pharmacokinetics and antitumor efficacy profile of liposome-entrapped SN-38 formulation. Anticancer Res 25:331–341

    PubMed  CAS  Google Scholar 

  29. Eichhorn ME et al (2006) Paclitaxel encapsulated in cationic lipid complexes (MBT-0206) impairs functional tumor vascular properties as detected by dynamic contrast enhanced magnetic resonance imaging. Cancer Biol Ther 5:89–96

    PubMed  CAS  Google Scholar 

  30. Phuphanich S, Maria B, Braeckman R, Chamberlain M (2007) A pharmacokinetic study of intra-CSF administered encapsulated cytarabine (DepoCyt) for the treatment of neoplastic meningitis in patients with leukemia, lymphoma, or solid tumors as part of a phase III study. J Neurooncol 81:201–208

    Article  PubMed  CAS  Google Scholar 

  31. Glantz MJ et al (1999) A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res 5:3394–3402

    PubMed  CAS  Google Scholar 

  32. Jaeckle KA et al (2002) An open label trial of sustained-release cytarabine (DepoCyt) for the intrathecal treatment of solid tumor neoplastic meningitis. J Neurooncol 57:231–239

    Article  PubMed  Google Scholar 

  33. Mantripragada S (2002) A lipid based depot (DepoFoam technology) for sustained release drug delivery. Prog Lipid Res 41:392–406

    Article  PubMed  CAS  Google Scholar 

  34. Orlandi L et al (2001) Effects of liposome-entrapped annamycin in human breast cancer cells: Interference with cell cycle progression and induction of apoptosis. J Cell Biochem 81:9–22

    Article  PubMed  CAS  Google Scholar 

  35. Zou Y, Priebe W, Stephens LC, Perez-Soler R (1995) Preclinical toxicity of liposome-incorporated annamycin: Selective bone marrow toxicity with lack of cardiotoxicity. Clin Cancer Res 1:1369–1374

    PubMed  CAS  Google Scholar 

  36. Zou Y et al (1994) Antitumor activity of free and liposome-entrapped annamycin, a lipophilic anthracycline antibiotic with non-cross-resistance properties. Cancer Res 54:1479–1484

    PubMed  CAS  Google Scholar 

  37. Booser DJ et al (2002) Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother Pharmacol 50:6–8

    Article  PubMed  CAS  Google Scholar 

  38. Torchilin VP (1985) Liposomes as targetable drug carriers. Crit Rev Ther Drug Carrier Syst 2:65–115

    PubMed  CAS  Google Scholar 

  39. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    Article  PubMed  CAS  Google Scholar 

  40. Blume G, Cevc G (1993) Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta 1146:157–168

    Article  PubMed  CAS  Google Scholar 

  41. Needham D, McIntosh TJ, Lasic DD (1992) Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta 1108:40–48

    Article  PubMed  CAS  Google Scholar 

  42. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    Article  PubMed  CAS  Google Scholar 

  43. Yuan F et al (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54:3352–3356

    PubMed  CAS  Google Scholar 

  44. Gabizon AA (2001) Pegylated liposomal doxorubicin: Metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 19:424–436

    Article  PubMed  CAS  Google Scholar 

  45. Moghimi SM (2002) Chemical camouflage of nanospheres with a poorly reactive surface: Towards development of stealth and target-specific nanocarriers. Biochim Biophys Acta 1590:131–139

    Article  PubMed  CAS  Google Scholar 

  46. Moein Moghimi S et al (2006) Activation of the human complement system by cholesterol-rich and PEGylated liposomes-modulation of cholesterol-rich liposome-mediated complement activation by elevated serum LDL and HDL levels. J Liposome Res 16:167–174

    Article  PubMed  CAS  Google Scholar 

  47. Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clin Pharmacokinet 42:419–436

    Article  PubMed  CAS  Google Scholar 

  48. Harris JM, Martin NE, Modi M (2001) Pegylation: A novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–551

    Article  PubMed  CAS  Google Scholar 

  49. Ishida T et al (2005) Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: Effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Release 105:305–317

    Article  PubMed  CAS  Google Scholar 

  50. Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16:141–155

    Article  CAS  Google Scholar 

  51. Woodle MC (1998) Controlling liposome blood clearance by surface-grafted polymers. Adv Drug Deliv Rev 32:139–152

    Article  PubMed  CAS  Google Scholar 

  52. Whiteman KR, Subr V, Ulbrich K, Torchilin VP (2001) Poly(HPMA)-coated liposomes demonstrate prolonged circulation in mice. J Liposome Res 11:153–164

    Article  PubMed  CAS  Google Scholar 

  53. Torchilin VP et al (2001) Amphiphilic poly-N-vinylpyrrolidones: Synthesis, properties and liposome surface modification. Biomaterials 22:3035–3044

    Article  PubMed  CAS  Google Scholar 

  54. Metselaar JM et al (2003) A novel family of l-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug Chem 14:1156–1164

    Article  PubMed  CAS  Google Scholar 

  55. Takeuchi H, Kojima H, Yamamoto H, Kawashima Y (2001) Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J Control Release 75:83–91

    Article  PubMed  CAS  Google Scholar 

  56. Taira MC, Chiaramoni NS, Pecuch KM, Alonso-Romanowski S (2004) Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv 11:123–128

    Article  PubMed  CAS  Google Scholar 

  57. Mora M et al (2002) Design and characterization of liposomes containing long-chain N-acylPEs for brain delivery: Penetration of liposomes incorporating GM1 into the rat brain. Pharm Res 19:1430–1438

    Article  PubMed  CAS  Google Scholar 

  58. Minato S et al (2003) Application of polyethyleneglycol (PEG)-modified liposomes for oral vaccine: Effect of lipid dose on systemic and mucosal immunity. J Control Release 89:189–197

    Article  PubMed  CAS  Google Scholar 

  59. Xing L, Dawei C, Liping X, Rongqing Z (2003) Oral colon-specific drug delivery for bee venom peptide: Development of a coated calcium alginate gel beads-entrapped liposome. J Control Release 93:293–300

    Article  PubMed  CAS  Google Scholar 

  60. Phillips WT, Klipper R, Goins B (2000) Novel method of greatly enhanced delivery of liposomes to lymph nodes. J Pharmacol Exp Ther 295:309–313

    PubMed  CAS  Google Scholar 

  61. Allen TM, Hansen CB, Guo LS (1993) Subcutaneous administration of liposomes: A comparison with the intravenous and intraperitoneal routes of injection. Biochim Biophys Acta 1150:9–16

    Article  PubMed  CAS  Google Scholar 

  62. Kim CK, Han JH (1995) Lymphatic delivery and pharmacokinetics of methotrexate after intramuscular injection of differently charged liposome-entrapped methotrexate to rats. J Microencapsul 12:437–446

    Article  PubMed  CAS  Google Scholar 

  63. Fujimoto Y et al (2000) Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol Pharm Bull 23:97–100

    PubMed  CAS  Google Scholar 

  64. Zalipsky S et al (1999) New detachable poly(ethylene glycol) conjugates: Cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug Chem 10:703–707

    Article  PubMed  CAS  Google Scholar 

  65. Erdogan S et al (2006) Gadolinium-loaded polychelating polymer-containing cancer cell-specific immunoliposomes. J Liposome Res 16:45–55

    Article  PubMed  CAS  Google Scholar 

  66. Kale AA, Torchilin VP (2007) Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: The effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug Chem 18:363–370

    Article  PubMed  CAS  Google Scholar 

  67. Krown SE, Northfelt DW, Osoba D, Stewart JS (2004) Use of liposomal anthracyclines in Kaposi’s sarcoma. Semin Oncol 31:36–52

    Article  PubMed  CAS  Google Scholar 

  68. Rose PG (2005) Pegylated liposomal doxorubicin: Optimizing the dosing schedule in ovarian cancer. Oncologist 10:205–214

    Article  PubMed  CAS  Google Scholar 

  69. Thigpen JT et al (2005) Role of pegylated liposomal doxorubicin in ovarian cancer. Gynecol Oncol 96:10–18

    Article  PubMed  CAS  Google Scholar 

  70. Hussein MA, Anderson KC (2004) Role of liposomal anthracyclines in the treatment of multiple myeloma. Semin Oncol 31:147–160

    Article  PubMed  CAS  Google Scholar 

  71. Robert NJ et al (2004) The role of the liposomal anthracyclines and other systemic therapies in the management of advanced breast cancer. Semin Oncol 31:106–146

    Article  PubMed  CAS  Google Scholar 

  72. Keller AM et al (2004) Randomized phase III trial of pegylated liposomal doxorubicin versus vinorelbine or mitomycin C plus vinblastine in women with taxane-refractory advanced breast cancer. J Clin Oncol 22:3893–3901

    Article  PubMed  CAS  Google Scholar 

  73. Hau P et al (2004) Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 100:1199–1207

    Article  PubMed  CAS  Google Scholar 

  74. Kim ES et al (2001) A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer 34:427–432

    Article  PubMed  CAS  Google Scholar 

  75. Harrington KJ et al (2001) Phase I-II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol 12:493–496

    Article  PubMed  CAS  Google Scholar 

  76. Zamboni WC et al (2004) Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma. Cancer Chemother Pharmacol 53:329–336

    Article  PubMed  CAS  Google Scholar 

  77. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    Article  PubMed  CAS  Google Scholar 

  78. Adlakha-Hutcheon G, Bally MB, Shew CR, Madden TD (1999) Controlled destabilization of a liposomal drug delivery system enhances mitoxantrone antitumor activity. Nat Biotechnol 17:775–779

    Article  PubMed  CAS  Google Scholar 

  79. Torchilin VP et al (1992) Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J 6:2716–2719

    PubMed  CAS  Google Scholar 

  80. Blume G et al (1993) Specific targeting with poly(ethylene glycol)-modified liposomes: Coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1149:180–184

    Article  PubMed  CAS  Google Scholar 

  81. Abra RM et al (2002) The next generation of liposome delivery systems: Recent experience with tumor-targeted, sterically-stabilized immunoliposomes and active-loading gradients. J Liposome Res 12:1–3

    Article  PubMed  CAS  Google Scholar 

  82. Torchilin VP et al (2001) p-Nitrophenylcarbonyl-PEG-PE-liposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta 1511:397–411

    Article  PubMed  CAS  Google Scholar 

  83. Torchilin V, Klibanov A (1993) Coupling and labeling of phospholipids. In: Cevc G (ed) Phospholipid handbook. Marcel Dekker, New York, pp 293–322

    Google Scholar 

  84. Torchilin VP, Weissig V, Martin FJ, Heath TD (2003) Surface modifications of liposomes. In: Torchilin VP, Weissig V (eds) Liposomes: A practical approach, Oxford University Press, Oxford, New York, pp 193–229

    Google Scholar 

  85. Klibanov AL, Torchilin VP, Zalipsky S (2003) Long-circulating sterically protected liposomes. In: Torchilin VP, Weissig V (eds) Liposomes: A practical approach, Oxford University Press, Oxford, New York, pp 231–265

    Google Scholar 

  86. Sapra P, Allen TM (2002) Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 62:7190–7194

    PubMed  CAS  Google Scholar 

  87. Park JW et al (2001) Tumor targeting using anti-her2 immunoliposomes. J Control Release 74:95–113

    Article  PubMed  CAS  Google Scholar 

  88. Nellis DF et al (2005) Preclinical manufacture of anti-HER2 liposome-inserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis. Biotechnol Prog 21:221–232

    Article  PubMed  CAS  Google Scholar 

  89. Nellis DF et al (2005) Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol Prog 21:205–220

    Article  PubMed  CAS  Google Scholar 

  90. Kirpotin DB et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740

    Article  PubMed  CAS  Google Scholar 

  91. Kamps JA et al (2000) Uptake of long-circulating immunoliposomes, directed against colon adenocarcinoma cells, by liver metastases of colon cancer. J Drug Target 8:235–245

    Article  PubMed  CAS  Google Scholar 

  92. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP (2004) Tumor-targeted liposomes: Doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100:135–144

    Article  PubMed  CAS  Google Scholar 

  93. Elbayoumi TA, Torchilin VP (2007) Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. Eur J Pharm Sci 32:159–168

    Article  PubMed  CAS  Google Scholar 

  94. Elbayoumi TA, Torchilin VP (2008) Tumor-specific antibody-mediated targeted delivery of Doxil(R) reduces the manifestation of auricular erythema side effect in mice. Int J Pharm 357:272–279

    Article  PubMed  CAS  Google Scholar 

  95. Gupta B, Torchilin VP (2007) Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immunother 56:1215–1223

    Article  PubMed  CAS  Google Scholar 

  96. Raffaghello L et al (2003) Immunoliposomal fenretinide: A novel antitumoral drug for human neuroblastoma. Cancer Lett 197:151–155

    Article  PubMed  CAS  Google Scholar 

  97. Mamot C et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638

    Article  PubMed  CAS  Google Scholar 

  98. Mamot C et al (2006) EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J Drug Target 14:215–223

    Article  PubMed  CAS  Google Scholar 

  99. Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  100. Mastrobattista E et al (2002) Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem 277:27135–27143

    Article  PubMed  CAS  Google Scholar 

  101. Hatakeyama H et al (2004) Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int J Pharm 281:25–33

    Article  PubMed  CAS  Google Scholar 

  102. Ishida O et al (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18:1042–1048

    Article  PubMed  CAS  Google Scholar 

  103. Derycke AS, De Witte PA (2002) Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int J Oncol 20:181–187

    PubMed  CAS  Google Scholar 

  104. Gijsens A et al (2002) Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferrin conjugated PEG-liposomes. Int J Cancer 101:78–85

    Article  PubMed  CAS  Google Scholar 

  105. Iinuma H et al (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99:130–137

    Article  PubMed  CAS  Google Scholar 

  106. Eavarone DA, Yu X, Bellamkonda RV (2000) Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res 51:10–14

    Article  PubMed  CAS  Google Scholar 

  107. Omori N et al (2003) Targeting of post-ischemic cerebral endothelium in rat by liposomes bearing polyethylene glycol-coupled transferrin. Neurol Res 25:275–279

    Article  PubMed  CAS  Google Scholar 

  108. Joshee N, Bastola DR, Cheng PW (2002) Transferrin-facilitated lipofection gene delivery strategy: Characterization of the transfection complexes and intracellular trafficking. Hum Gene Ther 13:1991–2004

    Article  PubMed  CAS  Google Scholar 

  109. Xu L et al (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1:337–346

    PubMed  CAS  Google Scholar 

  110. Tan PH et al (2003) Antibody targeted gene transfer to endothelium. J Gene Med 5:311–323

    Article  PubMed  CAS  Google Scholar 

  111. Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 93:14164–14169

    Article  PubMed  CAS  Google Scholar 

  112. Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 88:5572–5576

    Article  PubMed  CAS  Google Scholar 

  113. Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269:3198–3204

    PubMed  CAS  Google Scholar 

  114. Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–693

    Article  PubMed  CAS  Google Scholar 

  115. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 56:1177–1192

    Article  PubMed  CAS  Google Scholar 

  116. Ni S, Stephenson SM, Lee RJ (2002) Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res 22:2131–2135

    PubMed  CAS  Google Scholar 

  117. Pan XQ, Wang H, Lee RJ (2003) Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm Res 20:417–422

    Article  PubMed  CAS  Google Scholar 

  118. Gupta Y, Jain A, Jain P, Jain SK (2007) Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J Drug Target 15:231–240

    Article  PubMed  CAS  Google Scholar 

  119. Torchilin VP et al (2002) Vaccination with nucleosomes results in strong inhibition of tumor growth in various models in mice. Proc Intl Symp Control Rel Bioact Mater 29:1197–1198

    Google Scholar 

  120. Stephenson SM et al (2003) Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Res 23:3341–3345

    PubMed  CAS  Google Scholar 

  121. Lu Y, Low PS (2002) Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 51:153–162

    Article  PubMed  CAS  Google Scholar 

  122. Turk MJ, Reddy JA, Chmielewski JA, Low PS (2002) Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim Biophys Acta 1559:56–68

    Article  PubMed  CAS  Google Scholar 

  123. Leamon CP, Cooper SR, Hardee GE (2003) Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: Evaluation in vitro and in vivo. Bioconjug Chem 14:738–747

    Article  PubMed  CAS  Google Scholar 

  124. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157

    Article  PubMed  CAS  Google Scholar 

  125. Drummond DC et al (2000) Liposome targeting to tumors using vitamin and growth factor receptors. Vitam Horm 60:285–332

    Article  PubMed  CAS  Google Scholar 

  126. Dagar S et al (2003) VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: In vivo studies. J Control Release 91:123–133

    Article  PubMed  CAS  Google Scholar 

  127. Schiffelers RM et al (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91:115–122

    Article  PubMed  CAS  Google Scholar 

  128. Gupta AS et al (2005) RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thromb Haemost 93:106–114

    PubMed  Google Scholar 

  129. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  130. Asai T et al (2002) Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett 520:167–170

    Article  PubMed  CAS  Google Scholar 

  131. Mamot C et al (2003) Liposome-based approaches to overcome anticancer drug resistance. Drug Resist Updat 6:271–279

    Article  PubMed  CAS  Google Scholar 

  132. Peer D, Margalit R (2004) Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer 108:780–789

    Article  PubMed  CAS  Google Scholar 

  133. Takakura Y et al (1989) Control of pharmaceutical properties of soybean trypsin inhibitor by conjugation with dextran. II: Biopharmaceutical and pharmacological properties. J Pharm Sci 78:219–222

    Article  PubMed  CAS  Google Scholar 

  134. Lee CM et al (2002) Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo. Cancer Res 62:4282–4288

    PubMed  CAS  Google Scholar 

  135. Terada T et al (2007) Optimization of tumor-selective targeting by basic fibroblast growth factor-binding peptide grafted PEGylated liposomes. J Control Release 119:262–270

    Article  PubMed  CAS  Google Scholar 

  136. Ikehara Y, Kojima N (2007) Development of a novel oligomannose-coated liposome-based anticancer drug-delivery system for intraperitoneal cancer. Curr Opin Mol Ther 9:53–61

    PubMed  CAS  Google Scholar 

  137. Simoes S et al (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965

    Article  PubMed  CAS  Google Scholar 

  138. Laham A et al (1988) Intracarotidal administration of liposomally-entrapped ATP: Improved efficiency against experimental brain ischemia. Pharmacol Res Commun 20:699–705

    Article  PubMed  CAS  Google Scholar 

  139. Sudimack JJ, Guo W, Tjarks W, Lee RJ (2002) A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta 1564:31–37

    Article  PubMed  CAS  Google Scholar 

  140. Asokan A, Cho MJ (2003) Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids. Biochim Biophys Acta 1611:151–160

    Article  PubMed  CAS  Google Scholar 

  141. Roux E et al (2004) Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J Control Release 94:447–451

    Article  PubMed  CAS  Google Scholar 

  142. Kakudo T et al (2004) Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: An artificial viral-like delivery system. Biochemistry 43:5618–5628

    Article  PubMed  CAS  Google Scholar 

  143. Karanth H, Murthy RS (2007) pH-Sensitive liposomes-principle and application in cancer therapy. J Pharm Pharmacol 59:469–483

    Article  PubMed  CAS  Google Scholar 

  144. Kale AA, Torchilin VP (2007) Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes. J Drug Target 15:538–545

    Article  PubMed  CAS  Google Scholar 

  145. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  146. Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  PubMed  CAS  Google Scholar 

  147. Rothbard JB et al (2002) Arginine-rich molecular transporters for drug delivery: Role of backbone spacing in cellular uptake. J Med Chem 45:3612–3618

    Article  PubMed  CAS  Google Scholar 

  148. Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–8791

    Article  PubMed  CAS  Google Scholar 

  149. Tseng YL, Liu JJ, Hong RL (2002) Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: A kinetic and efficacy study. Mol Pharmacol 62:864–872

    Article  PubMed  CAS  Google Scholar 

  150. Gorodetsky R et al (2004) Liposome transduction into cells enhanced by haptotactic peptides (Haptides) homologous to fibrinogen C-termini. J Control Release 95:477–488

    Article  PubMed  CAS  Google Scholar 

  151. Torchilin VP et al (2003) Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 100:1972–1977

    Article  PubMed  CAS  Google Scholar 

  152. Gupta B, Levchenko T, Torchilin VP (2007) TAT peptide-modified liposomes provide enhanced gene delivery to intracranial human brain tumor xenografts in nude mice. Oncol Res 16:351–359

    PubMed  Google Scholar 

  153. Boddapati SV et al (2005) Mitochondriotropic liposomes. J Liposome Res 15:49–58

    PubMed  CAS  Google Scholar 

  154. Boddapati SV et al (2008) Organelle-targeted nanocarriers: Specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 8:2559–2563

    Article  PubMed  CAS  Google Scholar 

  155. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    Article  PubMed  CAS  Google Scholar 

  156. Torchilin VP (1996) Liposomes as delivery agents for medical imaging. Mol Med Today 2:242–249

    Article  PubMed  CAS  Google Scholar 

  157. Tilcock C (1995) Imaging tools: Liposomal agents for nuclear medicine, computed tomography, magnetic resonance, and ultrasound. In: Philippot JR, Schuber F (eds) Liposomes as tools in basic research and industry. CRC Press, Boca Raton, pp 225–240

    Google Scholar 

  158. Torchilin VP (1997) Surface-modified liposomes in gamma- and MR-imaging. Adv Drug Deliv Rev 24:301–313

    Article  CAS  Google Scholar 

  159. Torchilin VP (2000) Polymeric contrast agents for medical imaging. Curr Pharm Biotechnol 1:183–215

    Article  PubMed  CAS  Google Scholar 

  160. Erdogan S, Roby A, Torchilin VP (2006) Enhanced tumor visualization by gamma-scintigraphy with 111In-labeled polychelating-polymer-containing immunoliposomes. Mol Pharm 3:525–530

    Article  PubMed  CAS  Google Scholar 

  161. Weissig VV, Babich J, Torchilin VV (2000) Long-circulating gadolinium-loaded liposomes: Potential use for magnetic resonance imaging of the blood pool. Colloids Surf B Biointerfaces 18:293–299

    Article  PubMed  CAS  Google Scholar 

  162. Lokling KE, Fossheim SL, Klaveness J, Skurtveit R (2004) Biodistribution of pH-responsive liposomes for MRI and a novel approach to improve the pH-responsiveness. J Control Release 98:87–95

    Article  PubMed  CAS  Google Scholar 

  163. Viglianti BL et al (2004) In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: Illustration of targeted delivery. Magn Reson Med 51:1153–1162

    Article  PubMed  CAS  Google Scholar 

  164. Plassat V et al (2007) Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: Pharmacokinetics and biodistribution. Int J Pharm 344:118–127

    Google Scholar 

  165. Bao A et al (2003) A novel liposome radiolabeling method using 99mTc-“SNS/S” complexes: In vitro and in vivo evaluation. J Pharm Sci 92:1893–1904

    Article  PubMed  CAS  Google Scholar 

  166. Sachse A et al (1993) Preparation and evaluation of lyophilized iopromide-carrying liposomes for liver tumor detection. Invest Radiol 28:838–844

    PubMed  CAS  Google Scholar 

  167. Sachse A et al (1997) Biodistribution and computed tomography blood-pool imaging properties of polyethylene glycol-coated iopromide-carrying liposomes. Invest Radiol 32:44–50

    Article  PubMed  CAS  Google Scholar 

  168. Xie F, Hankins J, Mahrous HA, Porter TR (2007) Detection of coronary artery disease with a continuous infusion of definity ultrasound contrast during adenosine stress real time perfusion echocardiography. Echocardiography 24:1044–1050

    Article  PubMed  Google Scholar 

  169. Maruyama H et al (2005) Real-time blood-pool images of contrast enhanced ultrasound with definity in the detection of tumour nodules in the liver. Br J Radiol 78:512–518

    Article  PubMed  CAS  Google Scholar 

  170. Kitzman DW et al (2000) Efficacy and safety of the novel ultrasound contrast agent perflutren (definity) in patients with suboptimal baseline left ventricular echocardiographic images. Am J Cardiol 86:669–674

    Article  PubMed  CAS  Google Scholar 

  171. Morawski AM, Lanza GA, Wickline SA (2005) Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16:89–92

    Article  PubMed  CAS  Google Scholar 

  172. Mu Y et al (1999) Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells. Biochem Biophys Res Commun 255:75–79

    Article  PubMed  CAS  Google Scholar 

  173. Jana SS et al (2002) Targeted cytosolic delivery of hydrogel nanoparticles into HepG2 cells through engineered Sendai viral envelopes. FEBS Lett 515:184–188

    Article  PubMed  CAS  Google Scholar 

  174. Cusi MG et al (2004) Efficient delivery of DNA to dendritic cells mediated by influenza virosomes. Vaccine 22:735–739

    Article  PubMed  CAS  Google Scholar 

  175. Bungener L, Huckriede A, Wilschut J, Daemen T (2002) Delivery of protein antigens to the immune system by fusion-active virosomes: A comparison with liposomes and ISCOMs. Biosci Rep 22:323–338

    Article  PubMed  CAS  Google Scholar 

  176. Bungener L et al (2002) Virosome-mediated delivery of protein antigens to dendritic cells. Vaccine 20:2287–2295

    Article  PubMed  CAS  Google Scholar 

  177. Huckriede A, Bungener L, Daemen T, Wilschut J (2003) Influenza virosomes in vaccine development. Meth Enzymol 373:74–91

    Article  PubMed  CAS  Google Scholar 

  178. Herzog C, Metcalfe IC, Schaad UB (2002) Virosome influenza vaccine in children. Vaccine 20(Suppl 5):B24–B28

    Article  Google Scholar 

  179. Usonis V et al (2003) Antibody titres after primary and booster vaccination of infants and young children with a virosomal hepatitis A vaccine (Epaxal). Vaccine 21:4588–4592

    Article  PubMed  CAS  Google Scholar 

  180. Ambrosch F et al (2004) Rapid antibody response after vaccination with a virosomal hepatitis a vaccine. Infection 32:149–152

    Article  PubMed  CAS  Google Scholar 

  181. Ruf BR, Colberg K, Frick M, Preusche A (2004) Open, randomized study to compare the immunogenicity and reactogenicity of an influenza split vaccine with an MF59-adjuvanted subunit vaccine and a virosome-based subunit vaccine in elderly. Infection 32:191–198

    Article  PubMed  CAS  Google Scholar 

  182. MacGregor RR et al (1998) First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: Safety and host response. J Infect Dis 178:92–100

    PubMed  CAS  Google Scholar 

  183. Moser C, Metcalfe IC, Viret JF (2003) Virosomal adjuvanted antigen delivery systems. Expert Rev Vaccines 2:189–196

    Article  PubMed  CAS  Google Scholar 

  184. Huckriede A, De Jonge J, Holtrop M, Wilschut J (2007) Cellular delivery of siRNA mediated by fusion-active virosomes. J Liposome Res 17:39–47

    Article  PubMed  CAS  Google Scholar 

  185. Copland MJ, Rades T, Davies NM, Baird MA (2005) Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83:97–105

    Article  PubMed  CAS  Google Scholar 

  186. Chen WC, Huang L (2005) Non-viral vector as vaccine carrier. Adv Genet 54:315–337

    Article  PubMed  CAS  Google Scholar 

  187. Bramwell VW, Perrie Y (2005) Particulate delivery systems for vaccines. Crit Rev Ther Drug Carrier Syst 22:151–214

    Article  PubMed  CAS  Google Scholar 

  188. Cevc G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 56:675–711

    Article  PubMed  CAS  Google Scholar 

  189. Cevc G, Blume G (2001) New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers. Transfersomes Biochim Biophys Acta 1514:191–205

    Article  CAS  Google Scholar 

  190. Honeywell-Nguyen PL et al (2002) Transdermal delivery of pergolide from surfactant-based elastic and rigid vesicles: Characterization and in vitro transport studies. Pharm Res 19:991–997

    Article  PubMed  CAS  Google Scholar 

  191. Vutla NB, Betageri GV, Banga AK (1996) Transdermal iontophoretic delivery of enkephalin formulated in liposomes. J Pharm Sci 85:5–8

    Article  PubMed  CAS  Google Scholar 

  192. Han I, Kim M, Kim J (2004) Enhanced transfollicular delivery of adriamycin with a liposome and iontophoresis. Exp Dermatol 13:86–92

    Article  PubMed  CAS  Google Scholar 

  193. Derycke AS, de Witte PA (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56:17–30

    Article  PubMed  CAS  Google Scholar 

  194. Takeuchi Y et al (2004) Intracellular target for photosensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome. J Control Release 97:231–240

    Article  PubMed  CAS  Google Scholar 

  195. Ichikawa K et al (2004) Antiangiogenic photodynamic therapy (PDT) using Visudyne causes effective suppression of tumor growth. Cancer Lett 205:39–48

    Article  PubMed  CAS  Google Scholar 

  196. Igarashi A et al (2003) Liposomal photofrin enhances therapeutic efficacy of photodynamic therapy against the human gastric cancer. Toxicol Lett 145:133–141

    Article  PubMed  CAS  Google Scholar 

  197. Bourre L et al (2003) In vivo photosensitizing efficiency of a diphenylchlorin sensitizer: Interest of a DMPC liposome formulation. Pharmacol Res 47:253–261

    Article  PubMed  CAS  Google Scholar 

  198. Jezek P et al (2003) Experimental photodynamic therapy with MESO-tetrakisphenylporphyrin (TPP) in liposomes leads to disintegration of human amelanotic melanoma implanted to nude mice. Int J Cancer 103:693–702

    Article  PubMed  CAS  Google Scholar 

  199. Goldberg SN et al (2002) Percutaneous tumor ablation: Increased necrosis with combined radio- frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model. Radiology 222:797–804

    Article  PubMed  Google Scholar 

  200. Monsky WL et al (2002) Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model. Radiology 224:823–829

    Article  PubMed  CAS  Google Scholar 

  201. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    Article  PubMed  CAS  Google Scholar 

  202. Neveux N, De Bandt JP, Chaumeil JC, Cynober L (2002) Hepatic preservation, liposomally entrapped adenosine triphosphate and nitric oxide production: A study of energy state and protein metabolism in the cold-stored rat liver. Scand J Gastroenterol 37:1057–1063

    Article  PubMed  CAS  Google Scholar 

  203. Niibori K et al (1999) Bioenergetic effect of liposomal coenzyme Q10 on myocardial ischemia reperfusion injury. Biofactors 9:307–313

    Article  PubMed  CAS  Google Scholar 

  204. Xu GX et al (1990) Adenosine triphosphate liposomes: Encapsulation and distribution studies. Pharm Res 7:553–557

    Article  PubMed  CAS  Google Scholar 

  205. Verma DD, Levchenko T, Bernstein EA, Torchilin V (2004) In: Thirty-first annual meeting of the controlled release society, Controlled Release Society, Honolulu, pp #572

    Google Scholar 

  206. Liang W, Levchenko TS, Torchilin VP (2004) Encapsulation of ATP into liposomes by different methods: Optimization of the procedure. J Microencapsul 21:251–261

    Article  PubMed  CAS  Google Scholar 

  207. Verma DD et al (2006) ATP-loaded immunoliposomes specific for cardiac myosin provide improved protection of the mechanical functions of myocardium from global ischemia in an isolated rat heart model. J Drug Target 14:273–280

    Article  PubMed  CAS  Google Scholar 

  208. Verma DD et al (2005) ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res 22:2115–2120

    Article  PubMed  CAS  Google Scholar 

  209. Verma DD et al (2007) Protective effect of coenzyme Q10-loaded liposomes on the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res 24:2131–2137

    Google Scholar 

  210. Phillips WT et al (1999) Polyethylene glycol-modified liposome-encapsulated hemoglobin: A long circulating red cell substitute. J Pharmacol Exp Ther 288:665–670

    PubMed  CAS  Google Scholar 

  211. Awasthi V et al (2007) Cerebral oxygen delivery by liposome-encapsulated hemoglobin: A positron-emission tomographic evaluation in a rat model of hemorrhagic shock. J Appl Physiol 103:28–38

    Article  PubMed  CAS  Google Scholar 

  212. Awasthi VD et al (2004) Kinetics of liposome-encapsulated hemoglobin after 25% hypovolemic exchange transfusion. Int J Pharm 283:53–62

    Article  PubMed  CAS  Google Scholar 

  213. Nobuto H et al (2004) Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109:627–635

    Article  PubMed  CAS  Google Scholar 

  214. Kubo T et al (2001) Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters. Int J Oncol 18:121–125

    PubMed  CAS  Google Scholar 

  215. Babincova M et al (2000) Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field. Z Naturforsch [C] 55:278–281

    Google Scholar 

  216. Minko T et al (2006) New generation of liposomal drugs for cancer. Anticancer Agents Med Chem 6:537–552

    Article  PubMed  CAS  Google Scholar 

  217. Al-Jamal WT, Kostarelos K (2007) Construction of nanoscale multicompartment liposomes for combinatory drug delivery. Int J Pharm 331:182–185

    Article  PubMed  CAS  Google Scholar 

  218. Veerareddy PR, Vobalaboina V (2004) Lipid-based formulations of amphotericin B. Drugs Today (Barc) 40:133–145

    Google Scholar 

  219. Boulikas T, Stathopoulos GP, Volakakis N, Vougiouka M (2005) Systemic Lipoplatin infusion results in preferential tumor uptake in human studies. Anticancer Res 25:3031–3039

    Google Scholar 

  220. Stathopoulos GP et al (2005) Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): phase I study. Oncol Rep 13:589–595

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

ElBayoumi, T.A., Torchilin, V.P. (2010). Current Trends in Liposome Research. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology, vol 605. Humana Press. https://doi.org/10.1007/978-1-60327-360-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-360-2_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-359-6

  • Online ISBN: 978-1-60327-360-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics