Skip to main content

Cancer Research in Rat Models

  • Protocol
  • First Online:
Rat Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 597))

Abstract

Rat has been the major model species used in several biomedical fields, notably in drug development and toxicology, including carcinogenicity testing. Rat is also a useful model in basic cancer research. Several rat models of monogenic (Mendelian) human hereditary cancers are available. Some were obtained spontaneously, while others were generated either by mutagenesis of tumor suppressor genes or by transgenesis of activated oncogenes (transgenesis can be performed efficiently in the rat). In addition, among the hundreds of inbred rat strains that have been isolated, some are highly susceptible or resistant to certain types of cancer, and these divergent phenotypes were shown to be polygenic. Numerous quantitative trait loci (QTLs) controlling cancer susceptibility/resistance have been defined in linkage analyses, and several of these QTLs were physically demonstrated in congenic strains. These studies led, in particular, to rapid translation to the human, with the identification of loci controlling susceptibility to a form of multiple endocrine neoplasia (monogenic trait) and to breast cancer (polygenic disease). The biology of cancer resistance has also been analyzed, and in some (but not all) cases, it was linked to regression of preneoplasic lesions. Rat tumors have been the subject of various types of analyses, and these studies led to important conclusions, including that tumors can be classified on the basis of the identity of the inducing agent, thereby suggesting that analyses of human tumors may be valuable in determining retrospectively the role of specific carcinogens in the formation of human cancers, and of human breast cancer in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacob HJ (1999) Functional genomics and rat models. Genome Res 9:1013–1016

    Article  PubMed  CAS  Google Scholar 

  2. Hamm TE, King-Herbert A, Vasbinder MA (2006) Toxicology. In: Suckow MA, Weisbroth SH, Franklin CL (eds) The laboratory rat, 2nd edn. Elsevier, Amsterdam, pp 803–816

    Google Scholar 

  3. Festing MF (1997) Fat rats and carcinogenesis screening. Nature 388:321–322

    Article  PubMed  CAS  Google Scholar 

  4. Szpirer C, Levan G (2009) Rat gene mapping and genomics. In: Denny P, Kole C (eds) Genome mapping and genomics in laboratory animals. Springer (in press)

    Google Scholar 

  5. Balmain A, Nagase H (1998) Cancer resistance genes in mice: models for the study of tumour modifiers. Trends Genet 14:139–144

    Article  PubMed  CAS  Google Scholar 

  6. Demant P (2003) Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet 4:721–734

    Article  PubMed  CAS  Google Scholar 

  7. Abbott A (2007) Biologists claim Nobel prize with a knock-out. Nature 449:642

    Article  PubMed  Google Scholar 

  8. van der Weyden L, Adams DJ, Bradley A (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11:133–164

    PubMed  Google Scholar 

  9. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Hubner N, Izsvak Z, Jacob HJ, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno C, Mullins J, Mullins L, Olsson T, Pravenec M, Riley L, Saar K, Serikawa T, Shull JD, Szpirer C, Twigger SN, Voigt B, Worley K (2008) Progress and prospects in rat genetics: a community view. Nat Genet 40:516–522

    Article  PubMed  CAS  Google Scholar 

  10. Szpirer C, Szpirer J (2007) Mammary cancer susceptibility: human genes and rodent models. Mamm Genome 18:817–831

    Article  PubMed  Google Scholar 

  11. Amos-Landgraf JM, Kwong LN, Kendziorski CM, Reichelderfer M, Torrealba J, Weichert J, Haag JD, Chen KS, Waller JL, Gould MN, Dove WF (2007) A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer. Proc Natl Acad Sci U S A 104:4036–4041

    Article  PubMed  CAS  Google Scholar 

  12. Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62:244–278

    PubMed  CAS  Google Scholar 

  13. Thompson HJ, Singh M (2000) Rat models of premalignant breast disease. J Mammary Gland Biol Neoplasia 5:409–420

    Article  PubMed  CAS  Google Scholar 

  14. Welsch CW (1985) Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res 45:3415–3443

    PubMed  CAS  Google Scholar 

  15. Blakely CM, Stoddard AJ, Belka GK, Dugan KD, Notarfrancesco KL, Moody SE, D’Cruz CM, Chodosh LA (2006) Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res 66:6421–6431

    Article  PubMed  CAS  Google Scholar 

  16. Sell S (1993) The role of determined stem-cells in the cellular lineage of hepatocellular carcinoma. Int J Dev Biol 37:189–201

    PubMed  CAS  Google Scholar 

  17. Sell S (2003) Mouse models to study the interaction of risk factors for human liver cancer. Cancer Res 63:7553–7562

    PubMed  CAS  Google Scholar 

  18. Wood GA, Korkola JE, Archer MC (2002) Tissue-specific resistance to cancer development in the rat: phenotypes of tumor-modifier genes. Carcinogenesis 23:1–9

    Article  PubMed  Google Scholar 

  19. Greenhouse DG, Festing MF, Hasan S, Cohen AL (1990) Catalogue of inbred strains of rats and mutants. In: Hedrich HJ (ed) Genetic monitoring of inbred strains of rats. Gustav Fischer Verlag, Stuttgard, New York, pp 410–480

    Google Scholar 

  20. King-Herbert A, Thayer K (2006) NTP workshop: animal models for the NTP rodent cancer bioassay: stocks and strains – should we switch? Toxicol Pathol 34:802–805

    Article  PubMed  Google Scholar 

  21. Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, Anegon I (2005) Transgenic modifications of the rat genome. Transgenic Res 14:531–546

    Article  PubMed  CAS  Google Scholar 

  22. Dann CT (2007) New technology for an old favorite: lentiviral transgenesis and RNAi in rats. Transgenic Res 16:571–580

    Article  PubMed  CAS  Google Scholar 

  23. Aidoo A, Morris SM, Casciano DA (1997) Development and utilization of the rat lymphocyte hprt mutation assay. Mutat Res 387:69–88

    Article  PubMed  CAS  Google Scholar 

  24. Blanco D, Vicent S, Fraga MF, Fernandez-Garcia I, Freire J, Lujambio A, Esteller M, Ortiz-de-Solorzano C, Pio R, Lecanda F, Montuenga LM (2007) Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway. Neoplasia 9:840–852

    Article  PubMed  CAS  Google Scholar 

  25. Dragan YP, Hully JR, Nakamura J, Mass MJ, Swenberg JA, Pitot HC (1994) Biochemical events during initiation of rat hepatocarcinogenesis. Carcinogenesis 15:1451–1458

    Article  PubMed  CAS  Google Scholar 

  26. Dybdahl M, Risom L, Moller P, Autrup H, Wallin H, Vogel U, Bornholdt J, Daneshvar B, Dragsted LO, Weimann A, Poulsen HE, Loft S (2003) DNA adduct formation and oxidative stress in colon and liver of Big Blue rats after dietary exposure to diesel particles. Carcinogenesis 24:1759–1766

    Article  PubMed  CAS  Google Scholar 

  27. Grippo PJ, Sandgren EP (2005) Modeling pancreatic cancer in animals to address specific hypotheses. Methods Mol Med 103:217–243

    PubMed  CAS  Google Scholar 

  28. Nagao M, Ushijima T, Toyota M, Inoue R, Sugimura T (1997) Genetic changes induced by heterocyclic amines. Mutat Res 376:161–167

    Article  PubMed  CAS  Google Scholar 

  29. Jenkins S, Rowell C, Wang J, Lamartiniere CA (2007) Prenatal TCDD exposure predisposes for mammary cancer in rats. Reprod Toxicol 23:391–396

    Article  PubMed  CAS  Google Scholar 

  30. Fielden MR, Brennan R, Gollub J (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci 99:90–100

    Article  PubMed  CAS  Google Scholar 

  31. Nioi P, Pardo ID, Sherratt PJ, Snyder RD (2008) Prediction of non-genotoxic carcinogenesis in rats using changes in gene expression following acute dosing. Chem Biol Interact 172:206–215

    Article  PubMed  CAS  Google Scholar 

  32. Ohnishi T, Fukamachi K, Ohshima Y, Jiegou X, Ueda S, Iigo M, Takasuka N, Naito A, Fujita K, Matsuoka Y, Izumi K, Tsuda H (2007) Possible application of human c-Ha-ras proto-oncogene transgenic rats in a medium-term bioassay model for carcinogens. Toxicol Pathol 35:436–443

    Article  PubMed  CAS  Google Scholar 

  33. Ryu JY, Lee BM, Kacew S, Kim HS (2007) Identification of differentially expressed genes in the testis of Sprague-Dawley rats treated with di(n-butyl) phthalate. Toxicology 234:103–112

    Article  PubMed  CAS  Google Scholar 

  34. Williams PD, Lee JK, Theodorescu D (2008) Molecular credentialing of rodent bladder carcinogenesis models. Neoplasia 10:838–846

    PubMed  CAS  Google Scholar 

  35. Sell S (2007) Stem cells in hepatocarcinogenesis – the liver is the exception that proves the rule. Cellscience Reviews 3:302–341

    Google Scholar 

  36. Pascale RM, Simile MM, De Miglio MR, Feo F (2002) Chemoprevention of hepatocarcinogenesis: S-adenosyl-L-methionine. Alcohol 27:193–198

    Article  PubMed  CAS  Google Scholar 

  37. Manjanatha MG, Shelton S, Bishop ME, Lyn-Cook LE, Aidoo A (2006) Dietary effects of soy isoflavones daidzein and genistein on 7, 12-dimethylbenz[a]anthracene-induced mammary mutagenesis and carcinogenesis in ovariectomized Big Blue transgenic rats. Carcinogenesis 27:2555–2564

    Article  PubMed  CAS  Google Scholar 

  38. Reddy BS, Hirose Y, Cohen LA, Simi B, Cooma I, Rao CV (2000) Preventive potential of wheat bran fractions against experimental colon carcinogenesis: implications for human colon cancer prevention. Cancer Res 60:4792–4797

    PubMed  CAS  Google Scholar 

  39. Stone WL, Krishnan K, Campbell SE, Qui M, Whaley SG, Yang H (2004) Tocopherols and the treatment of colon cancer. Ann N Y Acad Sci 1031:223–233

    Article  PubMed  CAS  Google Scholar 

  40. Banerjee S, Bueso-Ramos C, Aggarwal BB (2002) Suppression of 7, 12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 62:4945–4954

    PubMed  CAS  Google Scholar 

  41. Burns FJ, Tang MS, Frenkel K, Nadas A, Wu F, Uddin A, Zhang R (2007) Induction and prevention of carcinogenesis in rat skin exposed to space radiation. Radiat Environ Biophys 46:195–199

    Article  PubMed  CAS  Google Scholar 

  42. Eason RR, Till SR, Frank JA, Badger TM, Korourian S, Simmen FA, Simmen RC (2006) Tumor-protective and tumor-promoting actions of dietary whey proteins in an N-methyl-N-nitrosourea model of rat mammary carcinogenesis. Nutr Cancer 55:171–177

    Article  PubMed  CAS  Google Scholar 

  43. Su Y, Simmen FA, Xiao R, Simmen RC (2007) Expression profiling of rat mammary epithelial cells reveals candidate signaling pathways in dietary protection from mammary tumors. Physiol Genomics 30:8–16

    Article  PubMed  CAS  Google Scholar 

  44. Whitsett TG Jr, Lamartiniere CA (2006) Genistein and resveratrol: mammary cancer chemoprevention and mechanisms of action in the rat. Expert Rev Anticancer Ther 6:1699–1706

    Article  PubMed  CAS  Google Scholar 

  45. Woditschka S, Haag JD, Waller JL, Monson DM, Hitt AA, Brose HL, Hu R, Zheng Y, Watson PA, Kim K, Lindstrom MJ, Mau B, Steele VE, Lubet RA, Gould MN (2006) Neu-induced retroviral rat mammary carcinogenesis: a novel chemoprevention model for both hormonally responsive and nonresponsive mammary carcinomas. Cancer Res 66:6884–6891

    Article  PubMed  CAS  Google Scholar 

  46. Toden S, Bird AR, Topping DL, Conlon MA (2007) High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: attenuation by high-amylose maize starch. Carcinogenesis 28:2355–2362

    Article  PubMed  CAS  Google Scholar 

  47. Turnbull C, Hodgson S (2005) Genetic predisposition to cancer. Clin Med 5:491–498

    PubMed  Google Scholar 

  48. Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33(Suppl):238–244

    Article  PubMed  CAS  Google Scholar 

  49. Hecht F (2007) Familial cancer syndromes: catalog with comments. Cytogenet Genome Res 118:222–228

    Article  PubMed  CAS  Google Scholar 

  50. Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, Wang YR, Hu R, Lopez-Guajardo CC, Brose HL, Porter KI, Leonard RA, Hitt AA, Schommer SL, Elegbede AF, Gould MN (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21:645–651

    Article  PubMed  CAS  Google Scholar 

  51. Cotroneo MS, Haag JD, Zan Y, Lopez CC, Thuwajit P, Petukhova GV, Camerini-Otero RD, Gendron-Fitzpatrick A, Griep AE, Murphy CJ, Dubielzig RR, Gould MN (2007) Characterizing a rat Brca2 knockout model. Oncogene 26:1626–1635

    Article  PubMed  CAS  Google Scholar 

  52. Smits BM, Cotroneo MS, Haag JD, Gould MN (2007) Genetically engineered rat models for breast cancer. Breast Dis 28:53–61

    PubMed  CAS  Google Scholar 

  53. Asamoto M, Ochiya T, Toriyama-Baba H, Ota T, Sekiya T, Terada M, Tsuda H (2000) Transgenic rats carrying human c-Ha-ras proto-oncogenes are highly susceptible to N-methyl-N-nitrosourea mammary carcinogenesis. Carcinogenesis 21:243–249

    Article  PubMed  CAS  Google Scholar 

  54. Tsuda H, Fukamachi K, Ohshima Y, Ueda S, Matsuoka Y, Hamaguchi T, Ohnishi T, Takasuka N, Naito A (2005) High susceptibility of human c-Ha-ras proto-oncogene transgenic rats to carcinogenesis: a cancer-prone animal model. Cancer Sci 96:309–316

    Article  PubMed  CAS  Google Scholar 

  55. Falchetti A, Marini F, Tonelli F, Brandi ML (2005) Lessons from genes mutated in multiple endocrine neoplasia (MEN) syndromes. Ann Endocrinol (Paris) 66:195–205

    CAS  Google Scholar 

  56. Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci U S A 103:15558–15563

    Article  PubMed  CAS  Google Scholar 

  57. Yeung RS, Xiao GH, Jin F, Lee WC, Testa JR, Knudson AG (1994) Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl Acad Sci U S A 91:11413–11416

    Article  PubMed  CAS  Google Scholar 

  58. Kobayashi T, Hirayama Y, Kobayashi E, Kubo Y, Hino O (1995) A germline insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer. Nat Genet 9:70–74

    Article  PubMed  Google Scholar 

  59. Momose S, Kobayashi T, Mitani H, Hirabayashi M, Ito K, Ueda M, Nabeshima Y, Hino O (2002) Identification of the coding sequences responsible for Tsc2-mediated tumor suppression using a transgenic rat system. Hum Mol Genet 11:2997–3006

    Article  PubMed  CAS  Google Scholar 

  60. Yeung RS, Gu H, Lee M, Dundon TA (2001) Genetic identification of a locus, Mot1, that affects renal tumor size in the rat. Genomics 78:108–112

    Article  PubMed  CAS  Google Scholar 

  61. Kikuchi Y, Sudo A, Mitani H, Hino O (2004) Presence of a modifier gene(s) affecting early renal carcinogenesis in the Tsc2 mutant (Eker) rat model. Int J Oncol 24:75–80

    PubMed  CAS  Google Scholar 

  62. Kouchi M, Okimoto K, Matsumoto I, Tanaka K, Yasuba M, Hino O (2006) Natural history of the Nihon (Bhd gene mutant) rat, a novel model for human Birt-Hogg-Dube syndrome. Virchows Arch 448:463–471

    Article  PubMed  Google Scholar 

  63. Togashi Y, Kobayashi T, Momose S, Ueda M, Okimoto K, Hino O (2006) Transgenic rescue from embryonic lethality and renal carcinogenesis in the Nihon rat model by introduction of a wild-type Bhd gene. Oncogene 25:2885–2889

    Article  PubMed  CAS  Google Scholar 

  64. Langer B, Dorsch M, Gartner K, Wedekind D, Kamino K, Hedrich HJ (2004) WKY/Ztm-ter: a new rat inbred strain on the WKY/Ztm genetic background with congenital teratomas. Lab Anim 38:425–431

    Article  PubMed  CAS  Google Scholar 

  65. Youngren KK, Coveney D, Peng X, Bhattacharya C, Schmidt LS, Nickerson ML, Lamb BT, Deng JM, Behringer RR, Capel B, Rubin EM, Nadeau JH, Matin A (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435:360–364

    Article  PubMed  CAS  Google Scholar 

  66. Mao JH, Balmain A (2003) Genomic approaches to identification of tumour-susceptibility genes using mouse models. Curr Opin Genet Dev 13:14–19

    Article  PubMed  CAS  Google Scholar 

  67. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    Article  PubMed  CAS  Google Scholar 

  68. Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8:58–69

    Article  PubMed  CAS  Google Scholar 

  69. Shull JD (2007) The rat oncogenome: comparative genetics and genomics of rat models of mammary carcinogenesis. Breast Dis 28:69–86

    PubMed  CAS  Google Scholar 

  70. Roshani L, Mallon P, Sjostrand E, Wedekind D, Szpirer J, Szpirer C, Hedrich HJ, Klinga-Levan K (2005) Genetic analysis of susceptibility to endometrial adenocarcinoma in the BDII rat model. Cancer Genet Cytogenet 158:137–1341

    Article  PubMed  CAS  Google Scholar 

  71. Park YG, Zhao X, Lesueur F, Lowy DR, Lancaster M, Pharoah P, Qian X, Hunter KW (2005) Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37:1055–10562

    Article  PubMed  CAS  Google Scholar 

  72. Schaffer BS, Lachel CM, Pennington KL, Murrin CR, Strecker TE, Tochacek M, Gould KA, Meza JL, McComb RD, Shull JD (2006) Genetic bases of estrogen-induced tumorigenesis in the rat: mapping of loci controlling susceptibility to mammary cancer in a Brown Norway × ACI intercross. Cancer Res 66:7793–7800

    Article  PubMed  CAS  Google Scholar 

  73. Haag JD, Shepel LA, Kolman BD, Monson DM, Benton ME, Watts KT, Waller JL, Lopez-Guajardo CC, Samuelson DJ, Gould MN (2003) Congenic rats reveal three independent Copenhagen alleles within the Mcs1 quantitative trait locus that confer resistance to mammary cancer. Cancer Res 63:5808–5812

    PubMed  CAS  Google Scholar 

  74. Samuelson DJ, Aperavich BA, Haag JD, Gould MN (2005) Fine mapping reveals multiple loci and a possible epistatic interaction within the mammary carcinoma susceptibility quantitative trait locus, Mcs5. Cancer Res 65:9637–9642

    Article  PubMed  CAS  Google Scholar 

  75. Samuelson DJ, Hesselson SE, Aperavich BA, Zan Y, Haag JD, Trentham-Dietz A, Hampton JM, Mau B, Chen KS, Baynes C, Khaw KT, Luben R, Perkins B, Shah M, Pharoah PD, Dunning AM, Easton DF, Ponder BA, Gould MN (2007) Rat Mcs5a is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk. Proc Natl Acad Sci U S A 104:6299–6304

    Article  PubMed  CAS  Google Scholar 

  76. Cotroneo MS, Merry GM, Haag JD, Lan H, Shepel LA, Gould MN (2006) The Mcs7 quantitative trait locus is associated with an increased susceptibility to mammary cancer in congenic rats and an allele-specific imbalance. Oncogene 25:5011–5017

    Article  PubMed  CAS  Google Scholar 

  77. Quan X, Laes JF, Stieber D, Riviere M, Russo J, Wedekind D, Coppieters W, Farnir F, Georges M, Szpirer J, Szpirer C (2006) Genetic identification of distinct loci controlling mammary tumor multiplicity, latency, and aggressiveness in the rat. Mamm Genome 17:310–321

    Article  PubMed  CAS  Google Scholar 

  78. Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW, Churchill GA, Takahashi JS, Redei EE (2004) Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm Genome 15:648–662

    Article  PubMed  Google Scholar 

  79. De Miglio MR, Canzian F, Pascale RM, Simile MM, Muroni MR, Calvisi D, Romeo G, Feo F (1999) Identification of genetic loci controlling hepatocarcinogenesis on rat chromosomes 7 and 10. Cancer Res 59:4651–4655

    PubMed  Google Scholar 

  80. Feo F, De Miglio MR, Simile MM, Muroni MR, Calvisi DF, Frau M, Pascale RM (2006) Hepatocellular carcinoma as a complex polygenic disease. Interpretive analysis of recent developments on genetic predisposition. Biochim Biophys Acta 1765:126–147

    PubMed  CAS  Google Scholar 

  81. Ushijima T, Yamamoto M, Suzui M, Kuramoto T, Yoshida Y, Nomoto T, Tatematsu M, Sugimura T, Nagao M (2000) Chromosomal mapping of genes controlling development, histological grade, depth of invasion, and size of rat stomach carcinomas. Cancer Res 60:1092–1096

    PubMed  CAS  Google Scholar 

  82. De Miglio MR, Virdis P, Calvisi DF, Mele D, Muroni MR, Frau M, Pinna F, Tomasi ML, Simile MM, Pascale RM, Feo F (2007) Identification and chromosome mapping of loci predisposing to colorectal cancer that control Wnt/beta-catenin pathway and progression of early lesions in the rat. Carcinogenesis 28:2367–2374

    Article  PubMed  CAS  Google Scholar 

  83. Korkola JE, Archer MC (1999) Resistance to mammary tumorigenesis in Copenhagen rats is associated with the loss of preneoplastic lesions. Carcinogenesis 20:221–227

    Article  PubMed  CAS  Google Scholar 

  84. Harris SR, Mehta RS, Hartle DK, Broderson JR, Bunce OR (1994) Failure of high fat diets to promote mammary cancers in spontaneously hypertensive rats. Cancer Lett 87:9–15

    Article  PubMed  CAS  Google Scholar 

  85. De Miglio MR, Simile MM, Muroni MR, Calvisi DF, Virdis P, Asara G, Frau M, Bosinco GM, Seddaiu MA, Daino L, Feo F, Pascale RM (2003) Phenotypic reversion of rat neoplastic liver nodules is under genetic control. Int J Cancer 105:70–75

    Article  PubMed  CAS  Google Scholar 

  86. Kindler-Röhrborn A, Kind AB, Koelsch BU, Fischer C, Rajewsky MF (2000) Suppression of ethylnitrosourea-induced schwannoma development involves elimination of neu/erbB-2 mutant premalignant cells in the resistant BDIV rat strain. Cancer Res 60:4756–4760

    PubMed  Google Scholar 

  87. Lella V, Stieber D, Riviere M, Szpirer J, Szpirer C (2007) Mammary cancer resistance and precocious mammary differentiation in the WKY rat: identification of 2 quantitative trait loci. Int J Cancer 121:1738–1743

    Article  PubMed  CAS  Google Scholar 

  88. Mitelman F (1971) The chromosomes of fifty primary Rous rat sarcomas. Hereditas 69:155–186

    Article  PubMed  CAS  Google Scholar 

  89. Levan G, Ahlstrom U, Mitelman F (1974) The specificity of chromosome A2 involvement in DMBA-induced rat sarcomas. Hereditas 77:263–280

    Article  PubMed  CAS  Google Scholar 

  90. Shih C, Padhy LC, Murray M, Weinberg RA (1981) Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290:261–264

    Article  PubMed  CAS  Google Scholar 

  91. Nordlander C, Karlsson S, Karlsson A, Sjoling A, Winnes M, Klinga-Levan K, Behboudi A (2007) Analysis of chromosome 10 aberrations in rat endometrial cancer-evidence for a tumor suppressor locus distal to Tp53. Int J Cancer 120:1472–1481

    Article  PubMed  CAS  Google Scholar 

  92. Koelsch BU, Kindler-Rohrborn A, Held S, Zabel S, Rajewsky MF (2002) Loss of heterozygosity in malignant rat schwannomas chemically induced in hybrids of inbred rat strains with differential tumor susceptibility. Carcinogenesis 23:1033–1037

    Article  PubMed  CAS  Google Scholar 

  93. Adamovic T, Trosso F, Roshani L, Andersson L, Petersen G, Rajaei S, Helou K, Levan G (2005) Oncogene amplification in the proximal part of chromosome 6 in rat endometrial adenocarcinoma as revealed by combined BAC/PAC FISH, chromosome painting, zoo-FISH, and allelotyping. Genes Chromosomes Cancer 44:139–153

    Article  PubMed  CAS  Google Scholar 

  94. Lastowska M, Chung YJ, Cheng Ching N, Haber M, Norris MD, Kees UR, Pearson AD, Jackson MS (2004) Regions syntenic to human 17q are gained in mouse and rat neuroblastoma. Genes Chromosomes Cancer 40:158–163

    Article  PubMed  CAS  Google Scholar 

  95. Karlsson A, Helou K, Walentinsson A, Hedrich HJ, Szpirer C, Levan G (2001) Amplification of Mycn, Ddx1, Rrm2, and Odc1 in rat uterine endometrial carcinomas. Genes Chromosomes Cancer 31:345–356

    Article  PubMed  CAS  Google Scholar 

  96. Samuelson E, Nordlander C, Levan G, Behboudi A (2008) Amplification studies of MET and Cdk6 in a rat endometrial tumor model and their correlation to human type I endometrial carcinoma tumors. Adv Exp Med Biol 617:511–517

    Article  PubMed  Google Scholar 

  97. Dano L, Guilly MN, Muleris M, Morlier JP, Altmeyer S, Vielh P, El-Naggar AK, Monchaux G, Dutrillaux B, Chevillard S (2000) CGH analysis of radon-induced rat lung tumors indicates similarities with human lung cancers. Genes Chromosomes Cancer 29:1–8

    Article  PubMed  CAS  Google Scholar 

  98. Walentinsson A, Sjoling A, Helou K, Klinga-Levan K, Levan G (2000) Genomewide assessment of genetic alterations in DMBA-induced rat sarcomas: cytogenetic, CGH, and allelotype analyses reveal recurrent DNA copy number changes in rat chromosomes 1, 2, 4, and 7. Genes Chromosomes Cancer 28:184–195

    Article  PubMed  CAS  Google Scholar 

  99. Christian AT, Snyderwine EG, Tucker JD (2002) Comparative genomic hybridization analysis of PhIP-induced mammary carcinomas in rats reveals a cytogenetic signature. Mutat Res 506–507:113–119

    PubMed  Google Scholar 

  100. Bagnyukova TV, Tryndyak VP, Montgomery B, Churchwell MI, Karpf AR, James SR, Muskhelishvili L, Beland FA, Pogribny IP (2008) Genetic and epigenetic changes in rat preneoplastic liver tissue induced by 2-acetylaminofluorene. Carcinogenesis 29:638–646

    Article  PubMed  CAS  Google Scholar 

  101. Kovalchuk O, Tryndyak VP, Montgomery B, Boyko A, Kutanzi K, Zemp F, Warbritton AR, Latendresse JR, Kovalchuk I, Beland FA, Pogribny IP (2007) Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications and aberrant microRNA expression. Cell Cycle 6:2010–2018

    Article  PubMed  CAS  Google Scholar 

  102. Loree J, Koturbash I, Kutanzi K, Baker M, Pogribny I, Kovalchuk O (2006) Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis. Int J Radiat Biol 82:805–815

    Article  PubMed  CAS  Google Scholar 

  103. Shimizu K, Onishi M, Sugata E, Sokuza Y, Mori C, Nishikawa T, Honoki K, Tsujiuchi T (2007) Disturbance of DNA methylation patterns in the early phase of hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined diet in rats. Cancer Sci 98:1318–1322

    Article  PubMed  CAS  Google Scholar 

  104. Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE, Condeelis JS (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67:3505–3511

    Article  PubMed  CAS  Google Scholar 

  105. Sumegi J, Spira J, Bazin H, Szpirer J, Levan G, Klein G (1983) Rat c-myc oncogene is located on chromosome 7 and rearranges in immunocytomas with t(6:7) chromosomal translocation. Nature 306:497–498

    Article  PubMed  CAS  Google Scholar 

  106. Klein G (1979) Lymphoma development in mice and humans: diversity of initiation is followed by convergent cytogenetic evolution. Proc Natl Acad Sci U S A 76:2442–2446

    Article  PubMed  CAS  Google Scholar 

  107. Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A, O’Neil J, Gutierrez A, Ivanova E, Perna I, Lin E, Mani V, Jiang S, McNamara K, Zaghlul S, Edkins S, Stevens C, Brennan C, Martin ES, Wiedemeyer R, Kabbarah O, Nogueira C, Histen G, Aster J, Mansour M, Duke V, Foroni L, Fielding AK, Goldstone AH, Rowe JM, Wang YA, Look AT, Stratton MR, Chin L, Futreal PA, DePinho RA (2007) Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447:966–971

    Article  PubMed  CAS  Google Scholar 

  108. Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, Flotte TJ, Duncan LM, Granter SR, Chin L (2006) Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125:1269–1281

    Article  PubMed  CAS  Google Scholar 

  109. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, Mu D, Lucito R, Powers S, Lowe SW (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125:1253–1267

    Article  PubMed  CAS  Google Scholar 

  110. Mitelman F, Mark J, Levan G, Levan A (1972) Tumor etiology and chromosome pattern. Science 176:1340–1341

    Article  PubMed  CAS  Google Scholar 

  111. Sakai H, Ogawa K (1991) Mutational activation of c-Ha-ras genes in intraductal proliferation induced by N-nitroso-N-methylurea in rat mammary glands. Int J Cancer 49:140–144

    Article  PubMed  CAS  Google Scholar 

  112. Zarbl H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M (1985) Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315:382–385

    Article  PubMed  CAS  Google Scholar 

  113. Samuelson E, Nilsson J, Walentinsson A, Szpirer C, Behboudi A (2008) Absence of Ras mutations in rat DMBA-induced mammary tumors. Mol Carcinog 48:150–155

    Google Scholar 

  114. Engelbergs J, Thomale J, Rajewsky MF (2000) Role of DNA repair in carcinogen-induced ras mutation. Mutat Res 450:139–153

    Article  PubMed  CAS  Google Scholar 

  115. Marxfeld H, Grenet O, Bringel J, Staedtler F, Harleman JH (2006) Differentiation of spontaneous and induced mammary adenocarcinomas of the rat by gene expression profiling. Exp Toxicol Pathol 58:151–161

    Article  PubMed  CAS  Google Scholar 

  116. Kuramoto T, Morimura K, Yamashita S, Okochi E, Watanabe N, Ohta T, Ohki M, Fukushima S, Sugimura T, Ushijima T (2002) Etiology-specific gene expression profiles in rat mammary carcinomas. Cancer Res 62:3592–3597

    PubMed  CAS  Google Scholar 

  117. Shan L, Yu M, Snyderwine EG (2005) Gene expression profiling of chemically induced rat mammary gland cancer. Carcinogenesis 26:503–509

    Article  PubMed  CAS  Google Scholar 

  118. Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI, Dickson R, Furth P, Hunter K, Kucherlapati R, Simon R, Liu ET, Green JE (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci U S A 99:6967–6972

    Article  PubMed  CAS  Google Scholar 

  119. Koelsch BU, Fischer C, Neibecker M, Schmitt N, Schmidt O, Rajewsky MF, Kindler-Rohrborn A (2006) Gender-specific polygenic control of ethylnitrosourea-induced oncogenesis in the rat peripheral nervous system. Int J Cancer 118:108–114

    Article  PubMed  CAS  Google Scholar 

  120. Pandey J, Wendell DL (2006) Angiogenesis and capillary maturation phenotypes associated with the Edpm3 locus on rat chromosome 3. Mamm Genome 17:49–57

    Article  PubMed  CAS  Google Scholar 

  121. Shull JD, Lachel CM, Murrin CR, Pennington KL, Schaffer BS, Strecker TE, Gould KA (2007) Genetic control of estrogen action in the rat: mapping of QTLs that impact pituitary lactotroph hyperplasia in a BN × ACI intercross. Mamm Genome 18:657–669

    Article  PubMed  CAS  Google Scholar 

  122. Yamashita S, Suzuki S, Nomoto T, Kondo Y, Wakazono K, Tsujino Y, Sugimura T, Shirai T, Homma Y, Ushijima T (2005) Linkage and microarray analyses of susceptibility genes in ACI/Seg rats: a model for prostate cancers in the aged. Cancer Res 65:2610–2616

    Article  PubMed  CAS  Google Scholar 

  123. Lu LM, Shisa H, Tanuma J, Hiai H (1999) Propylnitrosourea-induced T-lylphomas in LEXF RI strains of rats: genetic analysis. Br J Cancer 80:855–861

    Article  PubMed  CAS  Google Scholar 

  124. Hirano M, Tanuma J, Hirayama Y, Ohyama M, Semba I, Wakusawa S, Shisa H, Hiai H, Kitano M (2006) A speed congenic rat strain bearing the tongue cancer susceptibility locus Tscc1 from Dark-Agouti rats. Cancer Lett 231:185–191

    Article  PubMed  CAS  Google Scholar 

  125. Ogawa K, Tanuma J, Hirano M, Hirayama Y, Semba I, Shisa H, Kitano M (2006) Selective loss of resistant alleles at p15INK4B and p16INK4A genes in chemically-induced rat tongue cancers. Oral Oncol 42:710–717

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Recent work done in the author laboratory was supported by the Fund for Scientific Medical Research (FRSM, 3.4517.05), the Fund for Collective Fundamental research (FRFC, 2.4565.04), the National Fund for Scientific Research (FNRS, Télévie, 7.4620.07 and 7.4530.06), and the FP6 program EURATools. The author is a Research Director of the FNRS (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Szpirer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Szpirer, C. (2010). Cancer Research in Rat Models. In: Anegon, I. (eds) Rat Genomics. Methods in Molecular Biology, vol 597. Humana Press. https://doi.org/10.1007/978-1-60327-389-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-389-3_30

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-388-6

  • Online ISBN: 978-1-60327-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics