Skip to main content

Nanosizing by Spatially Modulated Illumination (SMI) Microscopy and Applications to the Nucleus

  • Protocol
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 464))

Abstract

In this chapter we present the method of spatially modulated illumination (SMI) microscopy, a (far-field) fluorescence microscopy technique featuring structured illumination obtained via a standing wave field laser excitation pattern. While this method does not provide higher optical resolution, it has been proven a highly valuable tool to access structural parameters of fluorescently labeled macromolecular structures in cells. SMI microscopy has been used to measure relative positions with a reproducibility of <2 nm between fluorescing objects. Among others, we have measured size distributions of protein clusters with an accuracy much better than the resolution achievable e.g. in confocal microscopy. The advantages of the SMI microscope over other (ultra-)high resolution light microscopes are its easy sample preparation and microscope handling as well as the comparably fast acquisition times and large fields of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Brien, T. P., Bult, C. J., Cremer, C., Grunze, M., Knowles, B. B., Langowski, J., McNally, J., Pederson, T., Politz, J. C., Pombo, A., Schmahl, G., Spatz, J. P., and van Driel, R. (2003) Genome function and nuclear architecture: from gene expression to nanoscience. Genome Res. 13, 1029–1041

    Article  PubMed  Google Scholar 

  2. Odenheimer, J., Kreth, G., and Heermann, D. W. (2005) Dynamic simulation of active/inactive chromatin domains. J. Biol. Phys. 31, 351–363

    Article  PubMed  Google Scholar 

  3. Egner, A. and Hell, S. W. (2005) Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15, 207–215

    Article  PubMed  CAS  Google Scholar 

  4. Hell, S. W., Lindek, S., Cremer, C., and Stelzer, E. H. K. (1994) Measurement of the 4Pi-confocal point spread function proves 75 nm resolution. Appl. Phys. Lett. 64, 1335–1337

    Article  Google Scholar 

  5. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R., and Hell, S. W. (2006) Nanoscale resolution in GFP-based microscopy. Nature 440, 935–939

    Article  PubMed  CAS  Google Scholar 

  6. Westphal, V. and Hell, S. W. (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94, 143903

    Article  PubMed  Google Scholar 

  7. Gustafsson, M. G. L., Agard, D. A., and Sedat, J. W. (1995) Seven-fold improvement of axial resolution in 3-D widefield microscopy using two objective lenses. Proc. SPIE 2412, 147–156

    Article  Google Scholar 

  8. Gustafsson, M. G. (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086

    Article  PubMed  CAS  Google Scholar 

  9. Heintzmann, R., Jovin, T. M., and Cremer, C. (2002) Saturated patterned excitation microscopy (SPEM)–a novel concept for optical resolution improvement. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 19, 1599–1609

    Article  PubMed  Google Scholar 

  10. Frohn, J. T., Knapp, H. F., and Stemmer, A. (2001) Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation. Opt. Lett. 26, 828–830

    Article  PubMed  CAS  Google Scholar 

  11. Frohn, J. T., Knapp, H. F., and Stemmer, A. (2000) True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc. Natl. Acad. Sci. USA 97, 7232–7236

    Article  PubMed  CAS  Google Scholar 

  12. Bornfleth, H., Sätzler, K., Eils, R., and Cremer, C. (1998) High precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J. Microsc. 189, 118–136

    Article  Google Scholar 

  13. Cremer, C., Edelmann, P., Bornfleth, H., Luz, H., Kreth, G., Münch, H., and Hausmann, M. (1999) in Handbook of computer vision and applications, Vol. 3 (Jahne, B., Hau³ecker, H. and Gei³ler, P., Eds.), pp. 839–857, Academic Press, San Diego, New York

    Google Scholar 

  14. Heilemann, M., Herten, D. P., Heintzmann, R., Cremer, C., Muller, C., Tinnefeld, P., Weston, K. D., Wolfrum, J., and Sauer, M. (2002) High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Anal. Chem. 74, 3511–3517

    Article  PubMed  CAS  Google Scholar 

  15. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J., and Hess, H. F. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645

    Article  PubMed  CAS  Google Scholar 

  16. Hess, S. T., Girirajan, T. P., and Mason, M. D. (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272

    Article  PubMed  CAS  Google Scholar 

  17. Bailey, B., Farkas, D. L., Taylor, D. L., and Lanni, F. (1993) Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366, 44–48

    Article  PubMed  CAS  Google Scholar 

  18. Albrecht, B., Schweitzer, A., Failla, A. V., Edelmann, P., and Cremer, C. (2002) Spatially modulated illumination (SMI) microscopy allows axial distance resolution in the nanometer range. Appl. Opt. 41, 80–87

    Article  PubMed  Google Scholar 

  19. Failla, A. V., Spoeri, U., Albrecht, B., Kroll, A., and Cremer, C. (2002) Nanosizing of fluorescent objects by spatially modulated illumination microscopy. Appl. Opt. 41, 7275–7283

    Article  PubMed  Google Scholar 

  20. Failla, A. V., Albrecht, B., Spöri, U., Schweitzer, A., Kroll, A., Hildenbrand, G., Bach, M., and Cremer, C. (2003) Nanostructure analysis using spatially modulated illumination microscopy. Com-PlexUs 1, 77–88

    Google Scholar 

  21. Spöri, U., Failla, A. V., and Cremer, C. (2004) Superresolution size determination in fluorescence microscopy: A comparison between spatially modulated illumination and confocal laser scanning microscopy. J. Appl. Phys. 95, 8436–8443

    Article  Google Scholar 

  22. Mathée, H., Baddeley, D., Wotzlaw, C., Fandrey, J., Cremer, C., and Birk, U. (2006) Nanostructure of specific chromatin regions and nuclear complexes. Histochem. Cell Biol. 125, 75–82

    Article  PubMed  Google Scholar 

  23. Hildenbrand, G., Rapp, A., Spoeri, U., Wagner, C., Cremer, C., and Hausmann, M. Nano-sizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy. (2005) Biophys. J. 88, 4312–4318

    Article  PubMed  CAS  Google Scholar 

  24. Martin, S., Failla, A. V., Spori, U., Cremer, C., and Pombo, A. (2004) Measuring the size of biological nanostructures with spatially modulated illumination microscopy. Mol. Biol. Cell 15, 2449–2455

    Article  PubMed  CAS  Google Scholar 

  25. Pombo, A., Jackson, D. A., Hollinshead, M., Wang, Z., Roeder, R. G., and Cook, P. R. (1999) Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J. 18, 2241–2253

    Article  PubMed  CAS  Google Scholar 

  26. Wansink, D. G., Sibon, O. C., Cremers, F. F., van Driel, R., and de Jong, L. (1996) Ultrastructural localization of active genes in nuclei of A431 cells. J. Cell. Biochem. 62, 10–18

    Article  PubMed  CAS  Google Scholar 

  27. Miller, O. L., Jr. and Bakken, A. H. (1972) Morphological studies of transcription. Acta Endocrinol. Suppl. 168, 155–177

    Google Scholar 

  28. Jackson, D. A., Iborra, F. J., Manders, E. M., and Cook, P. R. (1998) Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell 9, 1523–1536

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Birk, U.J., Baddeley, D., Cremer, C. (2008). Nanosizing by Spatially Modulated Illumination (SMI) Microscopy and Applications to the Nucleus. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 464. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-461-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-461-6_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-460-9

  • Online ISBN: 978-1-60327-461-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics