Skip to main content

A Natural Products Approach to Drug Discovery: Probing Modes of Action of Antitumor Agents by Genome-Scale cDNA Library Screening

  • Protocol
  • First Online:
Ligand-Macromolecular Interactions in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 572))

Summary

In the last few years, genomic tools have been incorporated in natural product approaches to drug discovery, including understanding mechanisms of action which cannot be elucidated from phenotypic screens such as cell viability assays. The characterization of perturbed biological pathways and target identification are important for the evaluation of the compounds’ potential as drug leads and for subsequent medicinal chemistry efforts; however, general procedures to tackle this task are lacking. The combination of high-throughput screening and genomic-scale assays has proven to be a powerful tool to aid in the identification of mechanisms and potentially of protein targets, not only in yeast but also mammalian cells. Arrayed libraries of cDNAs can be transfected into cancer cell lines in a high-throughput fashion to generate variants of spatially separated cancer cells with increased gene dosages for one particular cDNA. Cells overexpressing gene products that are directly targeted by a small molecule or that lie in the perturbed pathway may be less susceptible to the effects of the compound. This fact provides the basis for drug susceptibility screens employing cDNA libraries. The general procedures to optimize and execute those screens and subsequently validate putative screening hits are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stone, M. J. and Williams, D. H. (1992) The evolution of functional secondary metabolites (natural products). Mol. Microbiol. 6, 29–34

    Article  PubMed  CAS  Google Scholar 

  2. Dixon, N., Wong, L. S., Geerlings, T. H., and Micklefield, J. (2007) Cellular targets of natural products. Nat. Prod. Rep. 24, 1288–1310

    Article  PubMed  CAS  Google Scholar 

  3. Paterson, I. and Anderson, E. A. (2005) The renaissance of natural products as drug candidates. Science 310, 451–453

    Article  PubMed  Google Scholar 

  4. Breinbauer, R., Vetter, I. R. and Waldmann, H. (2002) From protein domain to drug candidates. Angew. Chem. Int. Ed. 41, 2878–2890

    Article  CAS  Google Scholar 

  5. Kramer, R. and Cohen, D. (2004) Functional genomics to new drug targets. Nat. Rev. Drug Discov. 3, 965–972

    Article  PubMed  CAS  Google Scholar 

  6. Balunas, M. J. and Kinghorn, A. D. (2005) Drug discovery from medicinal plants. Life Sci. 78, 431–441

    Article  PubMed  CAS  Google Scholar 

  7. Newman, D. J. and Cragg, G. M. (2007) Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477

    Article  PubMed  CAS  Google Scholar 

  8. Butler, M. S. (2005) Natural products to drugs: natural product derived compounds in clinical trials. Nat. Prod. Rep. 22, 162–195

    Article  PubMed  CAS  Google Scholar 

  9. Shu, Y.-Z. (1998) Recent natural products based drug development: a pharmaceutical industry perspective. J. Nat. Prod. 61, 1053–1071

    Article  PubMed  CAS  Google Scholar 

  10. Newman, D. J. and Cragg, G. M. (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67, 1216–1238

    Article  PubMed  CAS  Google Scholar 

  11. Baker, D. D., Chu, M., Oza, U., and Rajgarhia, V. (2007) The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep. 24, 1225–1244

    Article  PubMed  CAS  Google Scholar 

  12. Lee, K.-H. (2004) Current developments in the discovery and design of new drug candidates from plant natural product leads. J. Nat. Prod. 67, 273–283

    Article  PubMed  CAS  Google Scholar 

  13. McChesney, J. D., Venkataraman, S. K., and Henri, J. T. (2007) Plant natural products: back to the future or into extinction? Phytochemistry 68, 2015–2022

    Article  PubMed  CAS  Google Scholar 

  14. Lam, K. S. (2007) New aspects of natural products in drug discovery. Trends Microbiol. 15, 279–289

    Article  PubMed  CAS  Google Scholar 

  15. Butler, M. S. (2004) The role of natural product chemistry in drug discovery. J. Nat. Prod. 67, 2141–2153

    Article  PubMed  CAS  Google Scholar 

  16. Atta-ur-Rahman, Choudhary, M. I., and, Thomsen, W. J. (eds.) (2001) Bioassay Techniques for Drug Development. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  17. Rollinger, J. M., Langer, T., and Stuppner, H. (2006) Strategies for efficient lead structure discovery from natural products. Curr. Med. Chem. 13, 1491–1507

    Article  PubMed  CAS  Google Scholar 

  18. Potterat, O. and Hamburger, M. (2006) Natural products in drug discovery – concepts and approaches for tracking bioactivity. Curr. Org. Chem. 10, 899–920

    Article  CAS  Google Scholar 

  19. Choma, I. (2005) The use of thin-layer chromatography with direct bioautography for antimicrobial analysis. LC-GC Eur. 18, 482–488

    CAS  Google Scholar 

  20. Bohlin, L. and Bruhn, J. G. (eds.) (1999) Bioassay Methods in Natural Product Research and Drug Development. Kluwer, Dordrecht, pp.119–142

    Book  Google Scholar 

  21. Garipa, R. J. (2009) The emerging role of cell-based assays in drug discovery. In: Minor, L. K. (ed.) Handbook of Assay Development in Drug Discovery. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp. 221–226

    Google Scholar 

  22. Gullo, V. P., McAlpine, J., Lam, K. S., Baker, D., and Petersen, F. (2006) Drug discovery from natural products. J. Ind. Microbiol. Biotechnol. 33, 523–531

    Article  PubMed  CAS  Google Scholar 

  23. Jarvis, L. M. (2007) Living on the edge. Drugs targeting the protein Hsp90 push already unstable cancer cells to the brink. Chem. Eng. News 26, 15–23

    Google Scholar 

  24. van Elswijk, D. A. and Irth, H. (2003) Analytical tools for the detection and characterization of biologically active compounds from nature. Phytochem. Rev. 1, 427–439

    Article  Google Scholar 

  25. Vuorela, P., Leinonen, M., Saikku, P., Tammela, P., Rauha, J.-P., Wennberg, T., and Vuorela, H. (2004) Natural products in the process of finding new drug candidates. Curr. Med. Chem. 11, 1375–1389

    Article  PubMed  CAS  Google Scholar 

  26. Potterat, O. (2006) Targeted approaches in natural product lead discovery. Chimia 60, 19–22

    Article  CAS  Google Scholar 

  27. Xu, X., Zhu, L., and Chen, L. (2004) Separation and screening of compounds of biological origin using molecularly imprinted polymers. J. Chromatogr. B 804, 61–69

    Article  CAS  Google Scholar 

  28. Boldi, A. M. (ed.) (2006) Combinatorial Synthesis of Natural Product-Based Libraries. CRC Press, Taylor & Francis, Boca Raton, FL

    Google Scholar 

  29. Dekker, F. J., Koch, M. A., and Waldmann, H. (2005) Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics. Curr. Opin. Chem. Biol. 9, 232–239

    Article  PubMed  CAS  Google Scholar 

  30. Spring, D. R. (2005) Chemical genetics to chemical genomics: small molecules offer big insights. Chem. Soc. Rev. 34, 472–482

    Article  PubMed  CAS  Google Scholar 

  31. Piggott, A. M. and Karuso, P. (2004) Quality, not quantity: the role of natural products and chemical proteomics in modern drug discovery. Comb. Chem. High Throughput Screen. 7, 607–630

    Article  PubMed  CAS  Google Scholar 

  32. Hutchinson, C. R. (2005) Manipulating microbial metabolites for drug discovery and production. In: Zhang, L. and Demain, A. L. (eds.), Natural Products. Drug Discovery and Therapeutic Medicine. Humana, Totowa, NJ, pp. 77–93

    Google Scholar 

  33. Farnet, C. M. and Zazopoulos, E. (2005) Improving drug discovery from microorganisms. In: Zhang, L. and Demain, A. L. (eds.) Natural Products. Drug Discovery and Therapeutic Medicine. Humana, Totowa, NJ, pp. 95–106

    Google Scholar 

  34. Gohil, K. (2002) Genomic responses to herbal extracts: lessons from in vitro and in vivo studies with an extract of Ginkgo biloba. Biochem. Pharmacol. 64, 913–917

    Article  PubMed  CAS  Google Scholar 

  35. Coldre, C. D., Hashim, P., Ali, J. M., Oh, S.-K., Sinskey, A. J., and Rha, C. (2003) Gene expression changes in the human fibroblast induced by Centella asiatica triterpenoids. Planta Med. 69, 725–732

    Article  Google Scholar 

  36. Kawamura, A., Brekman, A., Grigoryev, Y., Hasson, T. H., Takaoka, A., Wolfe, S., and Soll, C. E. (2006) Rediscovery of natural products using genomic tools. Bioorg. Med. Chem. Lett. 16, 2846–2849

    Article  PubMed  CAS  Google Scholar 

  37. Van Lanen, S. G. and Shen, B. (2006) Microbial genomics for the improvement of natural product discovery. Curr. Opin. Microbiol. 9, 252–260

    Article  PubMed  Google Scholar 

  38. McAlpine, J. B., Bachmann, B. O., Piraee, M., Tremblay, S., Alarco, A.-M., Zazopoulos, E., and Farnet, C. M. (2005) Microbial genomics as a guide to drug discovery and structural Elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 68, 493–496

    Article  PubMed  CAS  Google Scholar 

  39. Hornung, A., Bertazzo, M., Dziarnowski, A., Schneider, K., Welzel, K., Wohlert, S.-E., Holzenkämpfer, M., Nicholson, G. J., Bechthold, A., Süssmuth, R. D., Vente, A., and Pelzer, S. (2007) A genomic screening approach to the structure-guided identification of drug candidates from natural sources. Chembiochem. 8, 757–766

    Article  PubMed  CAS  Google Scholar 

  40. Martinez, A., Hopke, J., MacNeil, I. A., and Osburne, M. S. (2005) Accessing the genomes of uncultivated microbes for novel natural products. In: Zhang, L. and Demain, A. L. (eds.) Natural Products. Drug Discovery and Therapeutic Medicine. Humana, Totowa, NJ, pp. 295–312

    Google Scholar 

  41. Wenzel, S. C. and Müller, R. (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr. Opin. Biotechnol. 16, 594–606

    Article  PubMed  CAS  Google Scholar 

  42. Luesch, H. (2006) Towards high-throughput characterization of small molecule mechanisms of action. Mol. BioSyst. 2, 609–620

    Article  PubMed  CAS  Google Scholar 

  43. Luesch, H., Wu, T. Y., Ren, P., Gray, N. S., Schultz, P. G., and Supek, F. (2005) A genome-wide overexpression screen in yeast for small-molecule target identification. Chem. Biol. 12, 55–63

    Article  PubMed  CAS  Google Scholar 

  44. Luesch, H., Chanda, S. K., Raya, R. M., DeJesus, P. D., Orth, A. P., Walker, J. R., Izpisúa Belmonte, J. C., and Schultz, P. G. (2006) A functional genomics approach to the mode of action of apratoxin A. Nat. Chem. Biol. 2, 158–167

    Article  PubMed  CAS  Google Scholar 

  45. Giaever, G., Shoemaker, D. D., Jones, T. W., Liang, H., Winzeler, E. A., Astromoff, A., and Davis, R. W. (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278–283

    Article  PubMed  CAS  Google Scholar 

  46. Lum, P. Y., Armour, C. D., Stepaniants, S. B., Cavet, G., Wolf, M. K., Butler, J. S., Hinshaw, J. C., Garnier, P., Prestwich, G. D., Leonardson, A., Garrett-Engele, P., Rush, C. M., Bard, M., Schimmack, G., Phillips, J. W., Roberts, C. J., and Shoemaker, D. D. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137

    Article  PubMed  CAS  Google Scholar 

  47. Giaever, G., Flaherty, P., Kumm, J., Proctor, M., Nislow, C., Jaramillo, D. F., Chu, A. M., Jordan, M. I., Arkin, A. P., and Davis, R. W. (2004) Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. U.S.A. 101, 793–798

    Article  PubMed  CAS  Google Scholar 

  48. Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D., Bennett, H. A., Coffey, E., Dai, H., He, Y. D., Kidd, M. J., King, A. M., Meyer, M. R., Slade, D., Lum, P. Y., Stepaniants, S. B., Shoemaker, D. D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., and Friend, S. H. (2000) Functional discovery via a compendium of expression profiles. Cell 102, 109–126

    Article  PubMed  CAS  Google Scholar 

  49. Brummelkamp, T. R., Fabius, A. M. W., Mullender, J., Madiredjo, M., Velds, A., Kerkhoven, R. M., Bernards, R., and Beijersbergen, R. L. (2006) An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat. Chem. Biol. 2, 202–206

    Article  PubMed  CAS  Google Scholar 

  50. Espinet, C., Gómez-Arbonés, X., Egea, J., and Comella, J. X. (2000) Combined use of the green and yellow fluorescent proteins and fluorescence-activated cell sorting to select populations of transiently transfected PC12 cells. J. Neurosci. Methods 100, 63–69

    Article  PubMed  CAS  Google Scholar 

  51. Chambers, J. M. and Hastie, T. J. (eds.) (1992) Statistical Models in S. Chapman & Hall/CRC, London

    Google Scholar 

Download references

Acknowledgments

H. L. received a Junior Investigator Award (pilot grant) from the University of Florida Shands Cancer Center, American Cancer Society, Institutional Research Grant, ACS-IRG-01–188–01. Further funding to H. L. to study mechanisms of anticancer drug action is provided by the James & Esther King Biomedical Research Program, Grant No. 06-NIR07.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Luesch, H., Abreu, P. (2010). A Natural Products Approach to Drug Discovery: Probing Modes of Action of Antitumor Agents by Genome-Scale cDNA Library Screening. In: Roque, A. (eds) Ligand-Macromolecular Interactions in Drug Discovery. Methods in Molecular Biology, vol 572. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-244-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-244-5_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-243-8

  • Online ISBN: 978-1-60761-244-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics