Skip to main content

Multidrug Resistance in Oncology and Beyond: From Imaging of Drug Efflux Pumps to Cellular Drug Targets

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Abstract

Resistance of tumor cells to several structurally unrelated classes of natural products, including anthracyclines, taxanes, and epipodophyllotoxines, is often referred as multidrug resistance (MDR). This is associated with ATP-binding cassette transporters, which function as drug efflux pumps such as P-glycoprotein (Pgp) and multidrug resistance-associated protein 1 (MRP1). Because of the hypothesis in the early eighties that blockade of these efflux pumps by modulators would improve the effect of chemotherapy, extensive effort has been put to visualize these pumps using nuclear imaging with several specific tracers, using both SPECT and PET techniques. The methods and possibilities to visualize these pumps in both the tumor and the blood–brain barrier will be discussed. Because of the fact that the addition of Pgp or MRP modulators has not shown any clinical benefit in patient outcome, these specific MDR tracers are not routinely used in clinical practice. Evidence emerges that combination of chemotherapeutic drugs involved in MDR with the so-called targeted agents can improve patient outcome. The concept of molecular imaging can also be used to visualize the targets for these agents, such as HER2/neu and angiogenic factors such as vascular endothelial growth factor (VEGF). Potentially visualizing molecular drug targets in the tumor can function as biomarkers to support treatment decision for the individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hait WN, Yang JM (2005) Clinical management of recurrent breast cancer: development of multidrug resistance (MDR) and strategies to circumvent it. Semin Oncol 32:S16–S21

    Article  CAS  PubMed  Google Scholar 

  2. Pusztai L, Wagner P, Ibrahim N et al (2005) Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 104:682–691

    Article  CAS  PubMed  Google Scholar 

  3. Hendrikse NH, Franssen EJ, van der Graaf WT, Vaalburg W, de Vries EG (1999) Visualization of multidrug resistance in vivo. Eur J Nucl Med 26:283–293

    Article  CAS  PubMed  Google Scholar 

  4. Kostakoglu L, Elahi N, Kiratli P et al (1997) Clinical validation of the influence of P-glycoprotein on technetium-99m-sestamibi uptake in malignant tumors. J Nucl Med 38:1003–1008

    CAS  PubMed  Google Scholar 

  5. Ciarmiello A, Del Vecchio S, Silvestro P et al (1998) Tumor clearance of technetium 99m-sestamibi as a predictor of response to neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 16:1677–1683

    CAS  PubMed  Google Scholar 

  6. Ho YJ, Jeng LB, Yang MD et al (2003) A trial of single photon emission computed tomography of the liver with technetium-99m tetrofosmin to detect hepatocellular carcinoma. Anticancer Res 23:1743–1746

    CAS  PubMed  Google Scholar 

  7. Wang H, Chen XP, Qiu FZ (2004) Correlation of expression of multidrug resistance protein and messenger RNA with 99mTc-methoxyisobutyl isonitrile (MIBI) imaging in patients with hepatocellular carcinoma. World J Gastroenterol 10:1281–1285

    CAS  PubMed  Google Scholar 

  8. Kao CH, Hsieh JF, Tsai SC et al (2001) Paclitaxel-Based chemotherapy for non-small cell lung cancer: predicting the response with 99mTc-tetrofosmin chest imaging. J Nucl Med 42:17–20

    CAS  PubMed  Google Scholar 

  9. Yeh JJ, Hsu WH, Huang WT et al (2003) Technetium-99m tetrofosmin SPECT predicts chemotherapy response in small cell lung cancer. Tumour Biol 24:151–155

    Article  PubMed  Google Scholar 

  10. Hsu WH, Yen RF, Kao CH et al (2002) Predicting chemotherapy response to paclitaxel-based therapy in advanced non-small-cell lung cancer (stage IIIb or IV) with a higher T stage (> T2). Technetium-99m methoxyisobutylisonitrile chest single photon emission computed tomography and P-glycoprotein express ion. Oncology 63:173–179

    Article  CAS  PubMed  Google Scholar 

  11. Kim IJ, Bae YT, Kim SJ et al (2006) Determination and prediction of P-glycoprotein and multidrug-resistance-related protein expression in breast cancer with double-phase technetium-99m sestamibi scintimammography. Visual and quantitative analyses. Oncology 70:403–410

    Article  CAS  PubMed  Google Scholar 

  12. Hendrikse NH, de Vries EG, Franssen EJ, Vaalburg W, van der Graaf WT (2001) In vivo measurement of [11C]verapamil kinetics in human tissues. Eur J Clin Pharmacol 56:827–829

    Article  CAS  PubMed  Google Scholar 

  13. Guhlmann A, Krauss K, Oberdorfer F et al (1995) Noninvasive assessment of hepatobiliary and renal elimination of cysteinyl leukotrienes by positron emission tomography. Hepatology 21:1568–1575

    Article  CAS  PubMed  Google Scholar 

  14. Hendrikse NH, Kuipers F, Meijer C et al (2004) In vivo imaging of hepatobiliary transport function mediated by multidrug resistance associated protein and P-glycoprotein. Cancer Chemother Pharmacol 54:131–138

    Article  CAS  PubMed  Google Scholar 

  15. van Eerd JE, de Geus-Oei LF, Oyen WJ, Corstens FH, Boerman OC (2006) Scintigraphic imaging of P-glycoprotein expression with a radiolabelled antibody. Eur J Nucl Med Mol Imaging 33:1266–1272

    Article  CAS  PubMed  Google Scholar 

  16. Hendrikse NH, Schinkel AH, de Vries EG et al (1998) Complete in vivo reversal of P-glycoprotein pump function in the blood–brain barrier visualized with positron emission tomography. Br J Pharmacol 124:1413–1418

    Article  CAS  PubMed  Google Scholar 

  17. Hendrikse NH, de Vries EG, Eriks-Fluks L et al (1999) A new in vivo method to study P-glycoprotein transport in tumors and the blood–brain barrier. Cancer Res 59:2411–2416

    CAS  PubMed  Google Scholar 

  18. Syvanen S, Blomquist G, Sprycha M et al (2006) Duration and degree of cyclosporin induced P-glycoprotein inhibition in the rat blood–brain barrier can be studied with PET. Neuroimage 32:1134–1141

    Article  PubMed  Google Scholar 

  19. Mima T, Toyonaga S, Mori K, Taniguchi T, Ogawa Y (1999) Early decrease of P-glycoprotein in the endothelium of the rat brain capillaries after moderate dose of irradiation. Neurol Res 21:209–215

    CAS  PubMed  Google Scholar 

  20. Bart J, Nagengast WB, Coppes RP et al (2007) Irradiation of rat brain reduces P-glycoprotein expression and function. Br J Cancer 97:322–326

    Article  CAS  PubMed  Google Scholar 

  21. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  22. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  CAS  PubMed  Google Scholar 

  23. Hayes DF, Thor AD, Dressler LG et al (2007) HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med 357:1496–1506

    Article  CAS  PubMed  Google Scholar 

  24. Zidan J, Dashkovsky I, Stayerman C et al (2005) Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br J Cancer 93:552–556

    Article  CAS  PubMed  Google Scholar 

  25. Cai W, Niu G, Chen X (2008) Multimodality imaging of the HER-kinase axis in cancer. Eur J Nucl Med Mol Imaging 35:186–208

    Article  PubMed  Google Scholar 

  26. De SK, Slamon D, Anderson SK et al (1992) Radiolabeled antibody targeting of the HER-2/neu oncoprotein. Cancer Res 52:1916–1923

    Google Scholar 

  27. Zalutsky MR, Xu FJ, Yu Y et al (1999) Radioiodinated antibody targeting of the HER-2/neu oncoprotein: effects of labeling method on cellular processing and tissue distribution. Nucl Med Biol 26:781–790

    Article  CAS  PubMed  Google Scholar 

  28. Tsai SW, Sun Y, Williams LE et al (2000) Biodistribution and radioimmunotherapy of human breast cancer xenografts with radiometal-labeled DOTA conjugated anti-HER2/neu antibody 4D5. Bioconjug Chem 11:327–334

    Article  CAS  PubMed  Google Scholar 

  29. Lub-de Hooge MN, Kosterink JG, Perik PJ et al (2004) Preclinical characterisation of 111In-DTPA-trastuzumab. Br J Pharmacol 143:99–106

    Article  CAS  PubMed  Google Scholar 

  30. Allan SM, Dean C, Fernando I et al (1993) Radioimmunolocalisation in breast cancer using the gene product of c-erbB2 as the target antigen. Br J Cancer 67:706–712

    CAS  PubMed  Google Scholar 

  31. Persson M, Tolmachev V, Andersson K et al (2005) [(177)Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumour cells. Eur J Nucl Med Mol Imaging 32:1457–1462

    Article  CAS  PubMed  Google Scholar 

  32. Meenakshi A, Kumar RS, Ganesh V, Kumar NS (2002) Preliminary study on radioimmunodiagnosis of experimental tumor models using technetium-99m-labeled anti-C-erbB-2 monoclonal antibody. Tumori 88:507–512

    CAS  PubMed  Google Scholar 

  33. Bakir MA, Eccles S, Babich JW et al (1992) C-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies. J Nucl Med 33:2154–2160

    CAS  PubMed  Google Scholar 

  34. Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW (2002) A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol 29:599–606

    Article  CAS  PubMed  Google Scholar 

  35. Bruskin A, Sivaev I, Persson M et al (2004) Radiobromination of monoclonal antibody using potassium [76Br] (4 isothiocyanatobenzyl-ammonio)-bromo-decahydro-closo-dodecaborate (Bromo-DABI). Nucl Med Biol 31:205–211

    Article  CAS  PubMed  Google Scholar 

  36. Winberg KJ, Persson M, Malmstrom PU, Sjoberg S, Tolmachev V (2004) Radiobromination of anti-HER2/neu/ErbB-2 monoclonal antibody using the p-isothiocyanatobenzene derivative of the [76Br]undecahydro-bromo-7, 8-dicarba-nido-undecaborate(1-) ion. Nucl Med Biol 31:425–433

    Article  CAS  PubMed  Google Scholar 

  37. Mume E, Orlova A, Malmstrom PU et al (2005) Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nucl Med Biol 32:613–622

    Article  CAS  PubMed  Google Scholar 

  38. Dijkers ECF, Lub-de Hooge MN, Kosterink JG et al (2007) Proc Am Soc Clin Oncol Annu Meet 25(18S):3508

    Google Scholar 

  39. Tang Y, Wang J, Scollard DA et al (2005) Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using (111)In-trastuzumab (Herceptin) Fab fragments. Nucl Med Biol 32:51–58

    Article  CAS  PubMed  Google Scholar 

  40. Tang Y, Scollard D, Chen P et al (2005) Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [(99m)Tc]-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl Med Commun 26:427–432

    Article  CAS  PubMed  Google Scholar 

  41. Adams GP, McCartney JE, Tai MS et al (1993) Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 53:4026–4034

    CAS  PubMed  Google Scholar 

  42. Adams GP, McCartney JE, Wolf EJ et al (1995) Enhanced tumor specificity of 741F8–1 (sFv’)2, an anti-c-erbB-2 single-chain Fv dimer, mediated by stable radioiodine conjugation. J Nucl Med 36:2276–2281

    CAS  PubMed  Google Scholar 

  43. Adams GP, Schier R, McCall AM et al (1998) Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br J Cancer 77:1405–1412

    CAS  PubMed  Google Scholar 

  44. Orlova A, Magnusson M, Eriksson TL et al (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348

    Article  CAS  PubMed  Google Scholar 

  45. Tran T, Engfeldt T, Orlova A et al (2007) (99m)Tc-maEEE-Z(HER2:342), an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjug Chem 18:1956–1964

    Article  CAS  PubMed  Google Scholar 

  46. Cheng Z, De Jesus OP, Namavari M et al (2008) Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med 49:804–813

    Article  CAS  PubMed  Google Scholar 

  47. Kramer-Marek G, Kiesewetter DO, Martiniova L et al (2008) [18F]FBEM-Z(HER2:342)-Affibody molecule-a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 35:1008–1018

    Article  CAS  PubMed  Google Scholar 

  48. Smith-Jones PM, Solit DB, Akhurst T et al (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701–706

    Article  CAS  PubMed  Google Scholar 

  49. Olafsen T, Kenanova VE, Sundaresan G et al (2005) Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 65:5907–5916

    Article  CAS  PubMed  Google Scholar 

  50. Robinson MK, Doss M, Shaller C et al (2005) Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 65:1471–1478

    Article  CAS  PubMed  Google Scholar 

  51. Mume E, Orlova A, Larsson B et al (2005) Evaluation of ((4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjug Chem 16:1547–1555

    Article  CAS  PubMed  Google Scholar 

  52. Perik PJ, Lub-de Hooge MN, Gietema JA et al (2006) Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 24:2276–2282

    Article  CAS  PubMed  Google Scholar 

  53. Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32:517–530

    Article  CAS  PubMed  Google Scholar 

  54. Smith-Jones PM, Solit DB, Akhurst T et al (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701–706

    Article  CAS  PubMed  Google Scholar 

  55. Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM (2006) Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 47:793–796

    CAS  PubMed  Google Scholar 

  56. Eubank WB, Mankoff DA (2005) Evolving role of positron emission tomography in breast cancer imaging. Semin Nucl Med 35:84–99

    Article  PubMed  Google Scholar 

  57. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3:269–280

    Article  CAS  PubMed  Google Scholar 

  58. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  CAS  PubMed  Google Scholar 

  59. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    Article  CAS  PubMed  Google Scholar 

  60. Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8:309–316

    Article  CAS  PubMed  Google Scholar 

  61. Varey AH, Rennel ES, Qiu Y et al (2008) VEGF(165)b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br J Cancer 98:1366–1379

    Article  CAS  PubMed  Google Scholar 

  62. Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3:24–40

    Article  CAS  PubMed  Google Scholar 

  63. Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  CAS  PubMed  Google Scholar 

  64. Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4:1317–1326

    CAS  PubMed  Google Scholar 

  65. Mishani E, Abourbeh G, Rozen Y et al (2004) Novel carbon-11 labeled 4-dimethylamino-but-2-enoic acid [4-(phenylamino)-quinazoline-6-yl]-amides: potential PET bioprobes for molecular imaging of EGFR-positive tumors. Nucl Med Biol 31:469–476

    Article  CAS  PubMed  Google Scholar 

  66. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    Article  CAS  PubMed  Google Scholar 

  67. Nguyen DM, Lorang D, Chen GA et al (2001) Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: in vitro and in vivo analysis. Ann Thorac Surg 72:371–378

    Article  CAS  PubMed  Google Scholar 

  68. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  CAS  PubMed  Google Scholar 

  69. Comerford KM, Wallace TJ, Karhausen J et al (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394

    CAS  PubMed  Google Scholar 

  70. Liu L, Ning X, Sun L et al (2008) Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci 99:121–128

    CAS  PubMed  Google Scholar 

  71. Cai W, Olafsen T, Zhang X et al (2007) PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 48:304–310

    Article  CAS  PubMed  Google Scholar 

  72. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  73. Lang SA, Klein D, Moser C et al (2007) Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol Cancer Ther 6:1123–1132

    Article  CAS  PubMed  Google Scholar 

  74. Lang SA, Moser C, Gaumann A et al (2007) Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth. Clin Cancer Res 13:6459–6468

    Article  CAS  PubMed  Google Scholar 

  75. Eccles SA, Massey A, Raynaud FI et al (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 68:2850–2860

    Article  CAS  PubMed  Google Scholar 

  76. Jiang BH, Liu LZ (2008) Role of mTOR in anticancer drug resistance: Perspectives for improved drug treatment. Drug Resist Updat 11:63–76

    Article  CAS  PubMed  Google Scholar 

  77. Mabuchi S, Altomare DA, Connolly DC et al (2007) RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 67:2408–2413

    Article  CAS  PubMed  Google Scholar 

  78. Lee JT Jr, Steelman LS, McCubrey JA (2004) Phosphatidylinositol 3’-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res 64:8397–8404

    Article  CAS  PubMed  Google Scholar 

  79. du Manoir JM, Francia G, Man S et al (2006) Strategies for delaying or treating in vivo acquired resistance to trastuzumab in human breast cancer xenografts. Clin Cancer Res 12:904–916

    Article  PubMed  Google Scholar 

  80. Nagengast WB, de Vries EG, Hospers GA et al (2007) In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 48:1313–1319

    Article  CAS  PubMed  Google Scholar 

  81. Jayson GC, Zweit J, Jackson A et al (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94:1484–1493

    CAS  PubMed  Google Scholar 

  82. Collingridge DR, Carroll VA, Glaser M et al (2002) The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res 62:5912–5919

    CAS  PubMed  Google Scholar 

  83. Nagengast WB, de Vries EG, Warnders FJ et al (2008) Proc. Am. Assoc. Cancer Res. Ann, Meeting Abstract 3161

    Google Scholar 

  84. Nagengast WB, Lub-de Hooge MN, Hospers GA et al (2008) Proc Am Soc Clin Oncol Ann Meet 26(15S):3547

    Google Scholar 

  85. Van Dongen GA, Visser GW, Lub-De Hooge MN, De Vries EG, Perk LR (2007) Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist 12:1379–1389

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a personal grant (W.B. Nagengast) and grant RUG 2007-3739 of the Dutch Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth G. E. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nagengast, W.B. et al. (2010). Multidrug Resistance in Oncology and Beyond: From Imaging of Drug Efflux Pumps to Cellular Drug Targets. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics