Skip to main content

Pharmacological Modification of Dendritic Cells to Promote Their Tolerogenicity in Transplantation

  • Protocol
  • First Online:
Dendritic Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 595))

Abstract

Dendritic cells (DCs) are uniquely specialized antigen-presenting cells (APC) that play critical roles in both the stimulation and regulation of immune responses, including T-cell responses to transplanted organs. The inherent tolerogenicity of non-activated or “immature” DCs is well documented. Importantly, the infusion of DCs that are made resistant to activating inflammatory stimuli by “conditioning” through exposure to clinically approved immunosuppressants, such as corticosteroids, deoxyspergualin, and recently, rapamycin (RAPA), has produced encouraging outcomes in experimental models. Indeed, the infusion of RAPA-conditioned, host-derived DCs, pulsed with alloantigen, prolongs allograft survival. In particular, when the RAPA-conditioned DCs are delivered repeatedly or in combination with a short course of immunosuppression indefinite allograft survival is observed, typically associated with increased Foxp3+ T-regulatory cells (Treg). Herein, we detail the procedures to generate and characterize RAPA-conditioned murine DCs (RAPA-DCs) ex vivo and in vivo. RAPA-DCs represent a pharmacologically conditioned DC population that promotes allograft survival and enriches for antigen-specific T-regulatory cells (Treg). DCs conditioned with immunosuppressive agents, like RAPA, represent novel and clinically applicable vectors or “negative” cellular vaccines, which can be loaded with donor antigen, and potentially used to promote/maintain organ transplant tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banchereau, J., and Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392, 245–252.

    Article  CAS  PubMed  Google Scholar 

  2. Steinman, R.M., Hawiger, D., and Nussenzweig, M.C. (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21, 685–711.

    Article  CAS  PubMed  Google Scholar 

  3. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18, 767–811.

    Article  CAS  PubMed  Google Scholar 

  4. Lotze, M.T., and Thomson, A.W., Dendritic Cells: Biology and Clinical Applications, pp. 1–794, second edition, M.T. Lotze and A.W. Thomson (Eds.), 2001, London, San Diego: Academic Press.

    Google Scholar 

  5. Morelli, A.E., and Thomson, A.W. (2003) Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev 196, 125–146.

    Article  CAS  PubMed  Google Scholar 

  6. Morelli, A.E., and Thomson, A.W. (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7, 610–621.

    Article  CAS  PubMed  Google Scholar 

  7. Fehervari, Z., and Sakaguchi, S. (2004) Control of Foxp3+CD25+CD4+ regulatory cell activation and function by dendritic cells. Int Immunol 16, 1769–1780.

    Article  CAS  PubMed  Google Scholar 

  8. Wing, K., Fehérvári, Z., and Sakaguchi, S. (2006) Emerging possibilities in the development and function of regulatory T cells. Int Immunol 18, 991–1000.

    Article  CAS  PubMed  Google Scholar 

  9. Levings, M.K., Gregori, S., Tresoldi, E., Cazzaniga, S., Bonini, C., and Roncarolo, M.G. (2005) Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood 105, 1162–1169.

    Article  CAS  PubMed  Google Scholar 

  10. Ueno, H., Klechevsky, E., Morita, R., Aspord, C., Cao, T., Matsui, T., Di Pucchio, T., Connolly, J., Fay, J.W., Pascual, V., Palucka, A.K., and Banchereau, J. (2007) Dendritic cell subsets in health and disease. Immunol Rev 219, 118–142.

    Article  CAS  PubMed  Google Scholar 

  11. Lotze, M.T., Zeh, H.J., Rubartelli, A., Sparvero, L.J., Amoscato, A.A., Washburn, N.R., Devera, M.E., Liang, X., Tör, M., and Billiar, T. (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220, 60–81.

    Article  CAS  PubMed  Google Scholar 

  12. Fujii, S., Liu, K., Smith, C., Bonito, A.J., and Steinman, R.M. (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199, 1607–1618.

    Article  CAS  PubMed  Google Scholar 

  13. Steinman, R.M., and Banchereau, J. (2007) Taking dendritic cells into medicine. Nature 449, 419–426.

    Article  CAS  PubMed  Google Scholar 

  14. Shortman, K., and Naik, S.H. (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7, 19–30.

    Article  CAS  PubMed  Google Scholar 

  15. Sehgal, S.N. (1998) Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 31, 335–340.

    Article  CAS  PubMed  Google Scholar 

  16. Kahan, B.D., and Camardo, J.S. (2001) Rapamycin: clinical results and future opportunities. Transplantation 72, 1181–1193.

    Article  CAS  PubMed  Google Scholar 

  17. Hackstein, H., Taner, T., Zahorchak, A.F., Morelli, A.E., Logar, A.J., Gessner, A., and Thomson, A.W. (2003) Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101, 4457–4463.

    Article  CAS  PubMed  Google Scholar 

  18. Woltman, A.M., van der Kooij, S.W., Coffer, P.J., Offringa, R., Daha, M.R., and van Kooten, C. (2003) Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 101, 1439–1445.

    Article  CAS  PubMed  Google Scholar 

  19. Monti, P., Mercalli, A., Leone, B.E., Valerio, D.C., Allavena, P., and Piemonti, L. (2003) Rapamycin impairs antigen uptake of human dendritic cells. Transplantation 75, 137–145.

    Article  CAS  PubMed  Google Scholar 

  20. Taner, T., Hackstein, H., Wang, Z., Morelli, A.E., and Thomson, A.W. (2005) Rapamycin-treated, alloantigen-pulsed host dendritic cells induce Ag-specific T cell regulation and prolong graft survival. Am J Transplant 5, 228–236.

    Article  CAS  PubMed  Google Scholar 

  21. Turnquist, H.R., Raimondi, G., Zahorchak, A.F., Fischer, R.T., Wang, Z., and Thomson, A.W. (2007) Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 178, 7018–7031.

    CAS  PubMed  Google Scholar 

  22. Horibe, E.K., Sacks, J., Unadkat, J., Raimondi, G., Wang, Z., Ikeguchi, R., Marsteller, D., Ferreira, L.M., Thomson, A.W., Lee, W.P., and Feili-Hariri, M. (2008) Rapamycin-conditioned, alloantigen-pulsed dendritic cells promote indefinite survival of vascularized skin allografts in association with T regulatory cell expansion. Transpl Immunol 18, 307–318.

    Article  CAS  PubMed  Google Scholar 

  23. Ikeguchi, R., Sacks, J.M., Unadkat, J.V., Solari, M., Horibe, E.K., Thomson, A.W., Lee, A.W., and Feili-Hariri, M. (2008) Long-Term survival of limb allografts induced by pharmacologically conditioned, donor alloantigen-pulsed dendritic cells without maintenance immunosuppression. Transplantation 85, 237–246.

    Article  CAS  PubMed  Google Scholar 

  24. Fedoric, B. and Krishnan, R. (2008) Rapamycin downregulates the inhibitory receptors ILT2, ILT3, ILT4 on human dendritic cells and yet induces T cell hyporesponsiveness independent of FoxP3 induction. Immunol Lett 8. (available ahead of print online 22 July 2008)

    Google Scholar 

  25. Turnquist, H.R., Sumpter, T.L., Tsung, A., Zahorchak, A.F., Nakao, A., Nau, G.J., Liew, F.Y., Geller, D.A., and Thomson, A.W. (2008) IL-1beta-driven ST2L expression promotes maturation resistance in rapamycin-conditioned dendritic cells. J Immunol 181, 62–72.

    CAS  PubMed  Google Scholar 

  26. Sordi, V., Bianchi, G., Buracchi, C., Mercalli, A., Marchesi, F., D’Amico, G., Yang, C.H., Luini, W., Vecchi, A., Mantovani, A., Allavena, P., and Piemonti, L. (2006) Differential effects of immunosuppressive drugs on chemokine receptor CCR7 in human monocyte-derived dendritic cells: selective upregulation by rapamycin. Transplantation 82, 826–834.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These protocols were developed with the support of National Institutes of Health (NIH) grants to A.W.T. (R01AI41011 and R01AI60994). H.R.T. was supported by non-concurrent fellowships from the American Society of Transplantation and the NIH (T32CA082084 and F32AI072940). R.F. is in receipt of a research training fellowship from the NIH (T32 DK71492).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Turnquist, H.R., Fischer, R.T., Thomson, A.W. (2010). Pharmacological Modification of Dendritic Cells to Promote Their Tolerogenicity in Transplantation. In: Naik, S. (eds) Dendritic Cell Protocols. Methods in Molecular Biology, vol 595. Humana Press. https://doi.org/10.1007/978-1-60761-421-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-421-0_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-420-3

  • Online ISBN: 978-1-60761-421-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics