Skip to main content

The Use of Liposomes in the Study of Drug Metabolism: A Method to Incorporate the Enzymes of the Cytochrome P450 Monooxygenase System into Phospholipid, Bilayer Vesicles

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 606))

Abstract

Although lipids are essential for the optimal activity of the cytochromes P450 monooxygenase system, relatively little is known about the membrane environment in which these enzymes function. One approach used to mimic the structural arrangement of lipids and enzymes within the endoplasmic reticulum is to physically incorporate the cytochromes P450 and their redox partners in a vesicle bilayer of phospholipids. Several methods have been devised for this purpose. This chapter describes a method in which the P450 monooxygenase system is incorporated by first, solubilizing the enzymes and lipid with sodium glycocholate. After the protein and lipid aggregates are dispersed, the detergent is removed by adsorption using BioBeads SM-2 resin which leads to the formation of bilayer vesicles of phospholipid containing incorporated cytochrome P450 and NADPH cytochrome P450 reductase. This procedure requires relatively a short preparation time, provides concentrated reconstituted systems that can be used in a wide range of applications, allows for several enzyme samples to be prepared simultaneously so that different conditions can be compared, and results in minimal loss of active enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porter TD, Coon MJ (1991) Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem 266:13469-13472

    CAS  PubMed  Google Scholar 

  2. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611-650

    Article  CAS  PubMed  Google Scholar 

  3. Weng Y, Fang C, Turesky RJ, Behr M, Kaminsky LS, Ding X (2007) Determination of the role of target tissue metabolism in lung carcinogenesis using conditional cytochrome P450 reductase-null mice. Cancer Res 67:7825-7832

    Article  CAS  PubMed  Google Scholar 

  4. Iyanagi T (2007) Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int Rev Cytol 260:35-112

    Article  CAS  PubMed  Google Scholar 

  5. Rooney PH, Telfer C, McFadyen MC, Melvin WT, Murray GI (2004) The role of cytochrome P450 in cytotoxic bioactivation: future therapeutic directions. Curr Cancer Drug Targets 4:257-265

    Article  CAS  PubMed  Google Scholar 

  6. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems-biological variations of electron transport chains. Biochim Biophys Acta 1770:330-344

    CAS  PubMed  Google Scholar 

  7. Guengerich FP (1989) Characterization of human microsomal cytochrome P-450 enzymes. Annu Rev Pharmacol Toxicol 29:241-264

    Article  CAS  PubMed  Google Scholar 

  8. West SB, Lu AYH (1972) Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds and endogenous substrates. V. Competition between cytochromes P-450 and P-448 for reductase in 3, 4-benzpyrene hydroxylation. Arch Biochem Biophys 153:298-303

    Article  CAS  PubMed  Google Scholar 

  9. Saine SE, Strobel HW (1976) Drug metabolism in liver tumors. Resolution of components and reconstitution of activity. Mol Pharmacol 12:649-657

    CAS  PubMed  Google Scholar 

  10. Strobel HW, Lu AYH, Heidema J, Coon MJ (1970) Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P-450 and in fatty acid, hydrocarbon, and drug hydroxylation. J Biol Chem 245:4851-4854

    CAS  PubMed  Google Scholar 

  11. Ingelman-Sundberg M (1977) Phospholipids and detergents as effectors in the liver microsomal hydroxylase system. Biochim Biophys Acta 488:225-234

    CAS  PubMed  Google Scholar 

  12. Taniguchi H, Pyerin W (1988) Phospholipid bilayer membranes play decisive roles in the cytochrome P-450-dependent monooxygenase system. J Cancer Res Clin Oncol 114:335-340

    Article  CAS  PubMed  Google Scholar 

  13. Causey KM, Eyer CS, Backes WL (1990) Dual role of phospholipid in the reconstitution of cytochrome P- 450 LM2-dependent activities. Mol Pharmacol 38:134-142

    CAS  PubMed  Google Scholar 

  14. Balvers WG, Boersma MG, Veeger C, Rietjens IM (1993) Kinetics of cytochromes P-450 IA1 and IIB1 in reconstituted systems with dilauroyl- and distearoyl-glycerophosphocholine. Eur J Biochem 215:373-381

    Article  CAS  PubMed  Google Scholar 

  15. Autor AP, Kaschnitz RM, Heidema JK, Coon MJ (1973) Sedimentation and other properties of the reconstituted liver microsomal mixed-function oxidase system containing cytochrome P-450, reduced triphosphopyridine nucleotide-cytochrome P-450 reductase, and phosphatidylcholine. Mol Pharmacol 9:93-104

    CAS  PubMed  Google Scholar 

  16. French JS, Guengerich FP, Coon MJ (1980) Interactions of cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system. J Biol Chem 255:4112-4119

    CAS  PubMed  Google Scholar 

  17. Reed JR, Kelley RW, Backes WL (2006) An evaluation of methods for the reconstitution of cytochromes P450 and NADPH P450 reductase into lipid vesicles. Drug Metab Dispos 34:660-666

    Article  CAS  PubMed  Google Scholar 

  18. Taniguchi H, Imai Y, Iyanagi T, Sato R (1979) Interaction between NADPH-cytochrome P-450 reductase and cytochrome P-450 in the membrane of phosphatidylcholine vesicles. Biochim Biophys Acta 550:341-356

    Article  CAS  PubMed  Google Scholar 

  19. Ingelman-Sundberg M, Glaumann H (1980) Incorporation of purified components of the rabbit liver microsomal hydroxylase system into phospholipid vesicles. Biochim Biophys Acta 599:417-435

    Article  CAS  PubMed  Google Scholar 

  20. Schwarz D, Gast K, Meyer HW, Lachmann U, Coon MJ, Ruckpaul K (1984) Incorporation of the cytochrome P-450 monooxygenase system into large unilamellar liposomes using octylglucoside, especially for measurements of protein diffusion in membranes. Biochem Biophys Res Commun 121:118-125

    Article  CAS  PubMed  Google Scholar 

  21. Ingelman-Sundberg M, Blanck J, Smettan G, Ruckpaul K (1983) Reduction of cytochrome P-450 LM2 by NADPH in reconstituted phospholipid vesicles is dependent on membrane charge. Eur J Biochem 134:157-162

    Article  CAS  PubMed  Google Scholar 

  22. Bosterling B, Trudell JR, Galla HJ (1981) Phospholipid interactions with cytochrome P-450 in reconstituted vesicles. Preference for negatively-charged phosphatidic acid. Biochim Biophys Acta 643:547-556

    Article  CAS  PubMed  Google Scholar 

  23. Kawato S, Gut J, Cherry RJ, Winterhalter KH, Richter C (1982) Rotation of cytochrome P-450. I. Investigations of protein-protein interactions of cytochrome P-450 in phospholipid vesicles and liver microsomes. J Biol Chem 257:7023-7029

    CAS  PubMed  Google Scholar 

  24. Schwarz D, Pirrwitz J, Ruckpaul K (1982) Rotational diffusion of cytochrome P-450 in the microsomal membrane-evidence for a clusterlike organization from saturation transfer electron paramagnetic resonance spectroscopy. Arch Biochem Biophys 216:322-328

    Article  CAS  PubMed  Google Scholar 

  25. Taniguchi H, Imai Y, Sato R (1987) Protein-protein and lipid-protein interactions in a reconstituted cytochrome P-450 dependent microsomal monooxygenase. Biochem 26:7084-7090

    Article  CAS  Google Scholar 

  26. Hjelmeland LM (1990) Solubilization of native membrane proteins. Meth Enzymol 182:253-264

    Article  CAS  PubMed  Google Scholar 

  27. Jackson ML, Schmidt CF, Lichtenberg D, Litman BJ, Albert AD (1982) Solubilization of phosphatidylcholine bilayers by octyl glucoside. Biochem 21:4576-4582

    Article  CAS  Google Scholar 

  28. Bayerl TM, Werner G-D, Sackmann E (1989) Solubilization of DMPC and DPPC vesicles by detergents below their critical midellization concentration: high-sensitivity differential scanning calorimetry, Fourier transform infared spectroscopy and freeze-fracture electron microscopy reveal two interaction sites of detergents in vesicles. Biochim Biophys Acta 984:214-224

    Article  CAS  PubMed  Google Scholar 

  29. Reed JR, Brignac-Huber LM, Backes WL (2008) Physical incorporation of NADPH-cytochrome P450 reductase and cytochrome P450 into phospholipid vesicles using glycocholate and Bio-Beads. Drug Metab Dispos 36:582-588

    Article  CAS  PubMed  Google Scholar 

  30. Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281-292

    Article  CAS  PubMed  Google Scholar 

  31. Browman DT, Resek ME, Zajchowski LD, Robbins SM (2006) Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 119:3149-3160

    Article  CAS  PubMed  Google Scholar 

  32. Holloway PW (1973) A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem 53:304-308

    Article  CAS  PubMed  Google Scholar 

  33. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370-2378

    CAS  PubMed  Google Scholar 

  34. Phillips AH, Langdon RG (1962) Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem 237:2652-2660

    CAS  PubMed  Google Scholar 

  35. Stewart JC (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10-14

    Article  CAS  PubMed  Google Scholar 

  36. Antonian L, Deb S, Spivak W (1990) Critical self-association of bile lipids studied by infrared spectroscopy and viscometry. J Lipid Res 31:947-951

    CAS  PubMed  Google Scholar 

  37. Levy D, Bluzat A, Seigneuret M, Rigaud JL (1990) A systematic study of liposome and proteoliposome reconstitution involving Bio-Bead-mediated TritonĂ—-100 removal. Biochim Biophys Acta 1025:179-190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reed, J.R. (2010). The Use of Liposomes in the Study of Drug Metabolism: A Method to Incorporate the Enzymes of the Cytochrome P450 Monooxygenase System into Phospholipid, Bilayer Vesicles. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology™, vol 606. Humana Press. https://doi.org/10.1007/978-1-60761-447-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-447-0_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-446-3

  • Online ISBN: 978-1-60761-447-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics