Skip to main content

Animal Models for Retinal Degeneration

  • Protocol
  • First Online:
Animal Models for Retinal Diseases

Part of the book series: Neuromethods ((NM,volume 46))

Abstract

Retinal degeneration is often used to describe a category of human eye diseases, which are characterized by photoreceptor loss leading to severe visual impairment and blindness. An important, yet heterogeneous group of such diseases is called Retinitis Pigmentosa (RP). To understand the molecular mechanisms of disease induction and progression and to develop therapeutical strategies for the preservation of vision in RP patients, appropriate animal models are used in many research laboratories worldwide. The largest category of models consists of mutant (spontaneous and genetically engineered) mice. However, in recent years, zebrafish has been established as a highly valuable tool for the study of various biological problems, including retinal degeneration. In this review, we summarize the currently available mouse and zebrafish models to study retinal degeneration and give a short overview about recent developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795-1809

    Article  CAS  PubMed  Google Scholar 

  2. Berson EL, Rosner B, Sandberg MA et al (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111:761-772

    CAS  PubMed  Google Scholar 

  3. D’Cruz PM, Yasumura D, Weir J et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645-651

    Article  PubMed  Google Scholar 

  4. Yuge K, Nambu H, Senzaki H et al (1996) N-methyl-N-nitrosourea-induced photoreceptor apoptosis in the mouse retina. In Vivo 10:483-488

    CAS  PubMed  Google Scholar 

  5. Nambu H, Yuge K, Nakajima M et al (1997) Morphologic characteristics of N-methyl-N-nitrosourea-induced retinal degeneration in C57BL mice. Pathol Int 47:377-383

    Article  CAS  PubMed  Google Scholar 

  6. Grimm C, Wenzel A, Hafezi F, Yu S, Redmond TM, Reme CE (2000) Protection of Rpe65-deficient  mice identifies rhodopsin as a mediator of light-induced retinal degeneration. Nat Genet 25:63-66

    Article  CAS  PubMed  Google Scholar 

  7. He L, Poblenz AT, Medrano CJ, Fox DA (2000) Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J Biol Chem 275:12175-12184

    Article  CAS  PubMed  Google Scholar 

  8. Shiraga S, Adamus G (2002) Mechanism of CAR syndrome: anti-recoverin antibodies are the inducers of retinal cell apoptotic death via the caspase 9- and caspase 3-dependent pathway. J Neuroimmunol 132:72-82

    Article  CAS  PubMed  Google Scholar 

  9. Cascio C, Guarneri R, Russo D et al (2002) A caspase-3-dependent pathway is predominantly activated by the excitotoxin pregnenolone sulfate and requires early and late cytochrome c release and cell-specific caspase-2 activation in the retinal cell death. J Neurochem 83:1358-1371

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Fortune B, Atchaneeyasakul LO et al (2008) Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion. Curr Eye Res 33:365-376

    Article  CAS  PubMed  Google Scholar 

  11. Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5:450-473

    CAS  PubMed  Google Scholar 

  12. Portera-Cailliau C, Sung CH, Nathans J, Adler R (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 91:974-978

    Article  CAS  PubMed  Google Scholar 

  13. Reme CE, Grimm C, Hafezi F, Iseli HP, Wenzel A (2003) Why study rod cell death in retinal degenerations and how? Doc Ophthalmol 106:25-29

    Article  CAS  PubMed  Google Scholar 

  14. Reme CE, Grimm C, Hafezi F, Marti A, Wenzel A (1998) Apoptotic cell death in retinal degenerations. Prog Retin Eye Res 17:443-464

    Article  CAS  PubMed  Google Scholar 

  15. Reme CE, Grimm C, Hafezi F, Wenzel A, Williams TP (2000) Apoptosis in the Retina: the silent death of vision. News Physiol Sci 15:120-124

    PubMed  Google Scholar 

  16. Paskowitz DM, LaVail MM, Duncan JL (2006) Light and inherited retinal degeneration. Br J Ophthalmol 90:1060-1066

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Seregard S, Algvere PV (2006) Photochemical damage of the retina. Surv Ophthalmol 51:461-481

    Article  PubMed  Google Scholar 

  18. La Vail MM (1976) Survival of some photoreceptor cells in albino rats following long-term exposure to continuous light. Invest Ophthalmol 15:64-70

    PubMed  Google Scholar 

  19. Organisciak DT, Darrow RM, Barsalou L et al (1998) Light history and age-related changes in retinal light damage. Invest Ophthalmol Vis Sci 39:1107-1116

    CAS  PubMed  Google Scholar 

  20. Hao W, Wenzel A, Obin MS et al (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat Genet 32:254-260

    Article  CAS  PubMed  Google Scholar 

  21. Hafezi F, Steinbach JP, Marti A et al (1997) The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nat Med 3:346-349

    Article  CAS  PubMed  Google Scholar 

  22. Wenzel A, Grimm C, Marti A et al (2000) c-fos controls the “private pathway” of light-induced apoptosis of retinal photoreceptors. J Neurosci 20:81-88

    CAS  PubMed  Google Scholar 

  23. Wenzel A, Grimm C, Seeliger MW et al (2001) Prevention of photoreceptor apoptosis by activation of the glucocorticoid receptor. Invest Ophthalmol Vis Sci 42:1653-1659

    CAS  PubMed  Google Scholar 

  24. Joly S, Lange C, Thiersch M, Samardzija M, Grimm C. (2008) Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J Neurosci 28:13965-13774

    Google Scholar 

  25. Samardzija M, Wenzel A, Aufenberg S, Thiersch M, Reme C, Grimm C (2006) Differential role of Jak-STAT signaling in retinal degenerations. FASEB J 20:2411-2413

    Article  CAS  PubMed  Google Scholar 

  26. Keller C, Grimm C, Wenzel A, Hafezi F, Reme C (2001) Protective effect of halothane anesthesia on retinal light damage: inhibition of metabolic rhodopsin regeneration. Invest Ophthalmol Vis Sci 42:476-480

    CAS  PubMed  Google Scholar 

  27. Wenzel A, Reme CE, Williams TP, Hafezi F, Grimm C (2001) The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration. J Neurosci 21:53-58

    CAS  PubMed  Google Scholar 

  28. Grimm C, Wenzel A, Hafezi F, Reme CE (2000) Gene expression in the mouse retina: the effect of damaging light. Mol Vis 6:252-260

    CAS  PubMed  Google Scholar 

  29. Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB (1990) Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 347:677-680

    Article  CAS  PubMed  Google Scholar 

  30. Naash MI, Ripps H, Li S, Goto Y, Peachey NS (1996) Polygenic disease and retinitis pigmentosa: albinism exacerbates photoreceptor degeneration induced by the expression of a mutant opsin in transgenic mice. J Neurosci 16:7853-7858

    CAS  PubMed  Google Scholar 

  31. Samardzija M, Wenzel A, Naash M, Reme CE, Grimm C (2006) Rpe65 as a modifier gene for inherited retinal degeneration. Eur J NeuroSci 23:1028-1034

    Article  CAS  PubMed  Google Scholar 

  32. Farber DB, Park S, Yamashita C (1988) Cyclic GMP-phosphodiesterase of rd retina: biosynthesis and content. Exp Eye Res 46:363-374

    Article  CAS  PubMed  Google Scholar 

  33. Fox DA, Poblenz AT, He L (1999) Calcium overload triggers rod photoreceptor apoptotic cell death in chemical-induced and inherited retinal degenerations. Ann N Y Acad Sci 893:282-285

    Article  CAS  PubMed  Google Scholar 

  34. Paquet-Durand F, Azadi S, Hauck SM, Ueffing M, van Veen T, Ekstrom P (2006) Calpain is activated in degenerating photoreceptors in the rd1 mouse. J Neurochem 96:802-814

    Article  CAS  PubMed  Google Scholar 

  35. Wu TH, Ting TD, Okajima TI et al (1998) Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa. Neuroscience 87:709-717

    Article  CAS  PubMed  Google Scholar 

  36. Surgucheva I, Ninkina N, Buchman VL, Grasing K, Surguchov A (2005) Protein aggregation in retinal cells and approaches to cell protection. Cell Mol Neurobiol 25:1051-1066

    Article  PubMed  Google Scholar 

  37. Frederick JM, Krasnoperova NV, Hoffmann K et al (2001) Mutant rhodopsin transgene expression on a null background. Invest Ophthalmol Vis Sci 42:826-833

    CAS  PubMed  Google Scholar 

  38. Gurne DH, Tso MO, Edward DP, Ripps H (1991) Antiretinal antibodies in serum of patients with age-related macular degeneration. Ophthalmology 98:602-607

    CAS  PubMed  Google Scholar 

  39. Heckenlively JR, Fawzi AA, Oversier J, Jordan BL, Aptsiauri N (2000) Autoimmune retinopathy: patients with antirecoverin immunoreactivity and panretinal degeneration. Arch Ophthalmol 118:1525-1533

    CAS  PubMed  Google Scholar 

  40. Edwards AO, Ritter Rr, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421-424

    Article  CAS  PubMed  Google Scholar 

  41. Hageman GS, Anderson DH, Johnson LV et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227-7232

    Article  CAS  PubMed  Google Scholar 

  42. Haines JL, Hauser MA, Schmidt S et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419-421

    Article  CAS  PubMed  Google Scholar 

  43. Rohrer B, Demos C, Frigg R, Grimm C (2007) Classical complement activation and acquired immune response pathways are not essential for retinal degeneration in the rd1 mouse. Exp Eye Res 84:82-91

    Article  CAS  PubMed  Google Scholar 

  44. Samardzija M, Wenzel A, Thiersch M, Frigg R, Reme C, Grimm C (2006) Caspase-1 ablation protects photoreceptors in a model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 47:5181-5190

    Article  PubMed  Google Scholar 

  45. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1-24

    Article  CAS  PubMed  Google Scholar 

  46. Rattner A, Nathans J (2005) The genomic response to retinal disease and injury: evidence for endothelin signaling from photoreceptors to glia. J Neurosci 25:4540-4549

    Article  CAS  PubMed  Google Scholar 

  47. Ueki Y, Wang J, Chollangi S, Ash JD (2008) STAT3 activation in photoreceptors by leukemia inhibitory factor is associated with protection from light damage. J Neurochem 105:784-796

    Article  CAS  PubMed  Google Scholar 

  48. Jin M, Li S, Moghrabi WN, Sun H, Travis GH (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122:449-459

    Article  CAS  PubMed  Google Scholar 

  49. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 102:12413-12418

    Article  CAS  PubMed  Google Scholar 

  50. Redmond TM, Poliakov E, Yu S, Tsai JY, Lu Z, Gentleman S (2005) Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A 102:13658-13663

    Article  CAS  PubMed  Google Scholar 

  51. Wenzel A, Grimm C, Samardzija M, Reme CE (2003) The genetic modifier Rpe65Leu(450): effect on light damage susceptibility in c-Fos-deficient mice. Invest Ophthalmol Vis Sci 44:2798-2802

    Article  PubMed  Google Scholar 

  52. Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231-2239

    Article  CAS  PubMed  Google Scholar 

  53. Cideciyan AV, Aleman TS, Boye SL et al (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 105:15112-15117

    Article  CAS  PubMed  Google Scholar 

  54. Hauswirth W, Aleman TS, Kaushal S et al (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979-990

    Google Scholar 

  55. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240-2248

    Article  CAS  PubMed  Google Scholar 

  56. Samardzija M, von Lintig J, Tanimoto N et al (2008) R91W mutation in Rpe65 leads to milder early-onset retinal dystrophy due to the generation of low levels of 11-cis-retinal. Hum Mol Genet 17:281-292

    Article  CAS  PubMed  Google Scholar 

  57. Samardzija M, Kostic C, Tanimoto N et al. (2009) In conditions of limited chromophore supply, rods trap 11-cis retinal leading to loss of cone function and cell death 18:1266-1275

    Google Scholar 

  58. MacDonald IM, Sauve Y, Sieving PA (2007) Preventing blindness in retinal disease: ciliary neurotrophic factor intraocular implants. Can J Ophthalmol 42:399-402

    Article  PubMed  Google Scholar 

  59. Ahuja P, Caffe AR, Holmqvist I et al (2001) Lens epithelium-derived growth factor (LEDGF) delays photoreceptor degeneration in explants of rd/rd mouse retina. Neuroreport 12:2951-2955

    Article  CAS  PubMed  Google Scholar 

  60. Cayouette M, Smith SB, Becerra SP, Gravel C (1999) Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6:523-532

    Article  CAS  PubMed  Google Scholar 

  61. Frasson M, Picaud S, Leveillard T et al (1999) Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40:2724-2734

    CAS  PubMed  Google Scholar 

  62. Leveillard T, Mohand-Said S, Lorentz O et al (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36:755-759

    Article  CAS  PubMed  Google Scholar 

  63. O’Driscoll C, O’Connor J, O’Brien CJ, Cotter TG (2008) Basic fibroblast growth factor-induced protection from light damage in the mouse retina in vivo. J Neurochem 105:524-536

    Article  PubMed  CAS  Google Scholar 

  64. LaVail MM, Yasumura D, Matthes MT et al (1998) Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39:592-602

    CAS  PubMed  Google Scholar 

  65. Grimm C, Wenzel A, Groszer M et al (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8:718-724

    Article  CAS  PubMed  Google Scholar 

  66. Grimm C, Wenzel A, Stanescu D et al (2004) Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 24:5651-5658

    Article  CAS  PubMed  Google Scholar 

  67. Thiersch M, Raffelsberger W, Frigg R et al (2008) Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection. BMC Genomics 9:73

    Article  PubMed  CAS  Google Scholar 

  68. Nawrocki L, BreMiller R, Streisinger G, Kaplan M (1985) Larval and adult visual pigments of the zebrafish, Brachydanio rerio. Vision Res 25:1569-1576

    Article  CAS  PubMed  Google Scholar 

  69. Robinson J, Schmitt EA, Harosi FI, Reece RJ, Dowling JE (1993) Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. Proc Natl Acad Sci U S A 90:6009-6012

    Article  CAS  PubMed  Google Scholar 

  70. Bilotta J, Saszik S (2001) The zebrafish as a model visual system. Int J Dev Neurosci 19:621-629

    Article  CAS  PubMed  Google Scholar 

  71. Driever W, Solnica-Krezel L, Schier AF et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37-46

    CAS  PubMed  Google Scholar 

  72. Haffter P, Granato M, Brand M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1-36

    CAS  PubMed  Google Scholar 

  73. Malicki J, Neuhauss SC, Schier AF et al (1996) Mutations affecting development of the zebrafish retina. Development 123:263-273

    CAS  PubMed  Google Scholar 

  74. Fadool JM, Brockerhoff SE, Hyatt GA, Dowling JE (1997) Mutations affecting eye morphology in the developing zebrafish (Danio rerio). Dev Genet 20:288-295

    Article  CAS  PubMed  Google Scholar 

  75. Huang YY, Neuhauss SC (2008) The optokinetic response in zebrafish and its applications. Front Biosci 13:1899-1916

    Article  PubMed  Google Scholar 

  76. Branchek T (1984) The development of photoreceptors in the zebrafish, Brachydanio rerio. II. Function. J Comp Neurol 224:116-122

    Article  CAS  PubMed  Google Scholar 

  77. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U S A 92:10545-10549

    Article  CAS  PubMed  Google Scholar 

  78. Makhankov YV, Rinner O, Neuhauss SC (2004) An inexpensive device for non-invasive electroretinography in small aquatic vertebrates. J Neurosci Methods 135:205-210

    Article  PubMed  Google Scholar 

  79. Saszik S, Bilotta J (1999) The effects of temperature on the dark-adapted spectral sensitivity function of the adult zebrafish. Vision Res 39:1051-1058

    Article  CAS  PubMed  Google Scholar 

  80. Seeliger MW, Rilk A, Neuhauss SC (2002) Ganzfeld ERG in zebrafish larvae. Doc Ophthalmol 104:57-68

    Article  PubMed  Google Scholar 

  81. Amsterdam A, Hopkins N (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 22:473-478

    Article  CAS  PubMed  Google Scholar 

  82. Gaiano N, Amsterdam A, Kawakami K, Allende M, Becker T, Hopkins N (1996) Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383:829-832

    Article  CAS  PubMed  Google Scholar 

  83. Gross JM, Perkins BD, Amsterdam A et al (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170:245-261

    Article  CAS  PubMed  Google Scholar 

  84. Nagayoshi S, Hayashi E, Abe G et al (2008) Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135:159-169

    Article  CAS  PubMed  Google Scholar 

  85. Sood R, English MA, Jones M et al (2006) Methods for reverse genetic screening in zebrafish by resequencing and TILLING. Methods 39:220-227

    Article  CAS  PubMed  Google Scholar 

  86. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700-2707

    Article  CAS  PubMed  Google Scholar 

  87. Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702-708

    Article  CAS  PubMed  Google Scholar 

  88. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695-701

    Article  CAS  PubMed  Google Scholar 

  89. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216-220

    Article  CAS  PubMed  Google Scholar 

  90. Robu ME, Larson JD, Nasevicius A et al (2007) p53 activation by knockdown technologies. PLoS Genet 3:e78

    Article  PubMed  CAS  Google Scholar 

  91. Bahadori R, Rinner O, Schonthaler HB et al (2006) The Zebrafish fade out mutant: a novel genetic model for Hermansky-Pudlak syndrome. Invest Ophthalmol Vis Sci 47:4523-4531

    Article  PubMed  Google Scholar 

  92. Rinner O, Makhankov YV, Biehlmaier O, Neuhauss SC (2005) Knockdown of cone-specific kinase GRK7 in larval zebrafish leads to impaired cone response recovery and delayed dark adaptation. Neuron 47:231-242

    Article  CAS  PubMed  Google Scholar 

  93. Bahadori R, Huber M, Rinner O et al (2003) Retinal function and morphology in two zebrafish models of oculo-renal syndromes. Eur J Neurosci 18:1377-1386

    Article  PubMed  Google Scholar 

  94. Doerre G, Malicki J (2002) Genetic analysis of photoreceptor cell development in the zebrafish retina. Mech Dev 110:125-138

    Article  CAS  PubMed  Google Scholar 

  95. Tsujikawa M, Malicki J (2004) Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42:703-716

    Article  CAS  PubMed  Google Scholar 

  96. Krock BL, Perkins BD (2008) The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate photoreceptors. J Cell Sci 121:1907-1915

    Article  CAS  PubMed  Google Scholar 

  97. Rando RR (2001) The biochemistry of the visual cycle. Chem Rev 101:1881-1896

    Article  CAS  PubMed  Google Scholar 

  98. Travis GH, Golczak M, Moise AR, Palczewski K (2007) Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol Toxicol 47:469-512

    Article  CAS  PubMed  Google Scholar 

  99. Schonthaler HB, Lampert JM, von Lintig J, Schwarz H, Geisler R, Neuhauss SC (2005) A mutation in the silver gene leads to defects in melanosome biogenesis and alterations in the visual system in the zebrafish mutant fading vision. Dev Biol 284:421-436

    Article  CAS  PubMed  Google Scholar 

  100. Fleisch VC, Schonthaler HB, von Lintig J, Neuhauss SC (2008) Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina. J Neurosci 28:8208-8216

    Article  CAS  PubMed  Google Scholar 

  101. Mata NL, Radu RA, Clemmons RC, Travis GH (2002) Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron 36:69-80

    Article  CAS  PubMed  Google Scholar 

  102. Schonthaler HB, Lampert JM, Isken A et al (2007) Evidence for RPE65-independent vision in the cone-dominated zebrafish retina. Eur J Neurosci 26:1940-1949

    Article  PubMed  Google Scholar 

  103. Redmond TM, Yu S, Lee E et al (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20:344-351

    Article  CAS  PubMed  Google Scholar 

  104. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13-23

    Article  CAS  PubMed  Google Scholar 

  105. Klement JF, Matsuzaki Y, Jiang QJ et al (2005) Targeted ablation of the abcc6 gene results in ectopic mineralization of connective tissues. Mol Cell Biol 25:8299-8310

    Article  CAS  PubMed  Google Scholar 

  106. Gorgels TG, Hu X, Scheffer GL et al (2005) Disruption of Abcc6 in the mouse: novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum Mol Genet 14:1763-1773

    Article  CAS  PubMed  Google Scholar 

  107. Ramamurthy V, Niemi GA, Reh TA, Hurley JB (2004) Leber congenital amaurosis linked to AIPL1: a mouse model reveals destabilization of cGMP phosphodiesterase. Proc Natl Acad Sci U S A 101:13897-13902

    Article  CAS  PubMed  Google Scholar 

  108. Liu X, Bulgakov OV, Wen XH et al (2004) AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc Natl Acad Sci U S A 101:13903-13908

    Article  CAS  PubMed  Google Scholar 

  109. Dyer MA, Donovan SL, Zhang J et al (2004) Retinal degeneration in Aipl1-deficient mice: a new genetic model of Leber congenital amaurosis. Brain Res Mol Brain Res 132:208-220

    Article  CAS  PubMed  Google Scholar 

  110. Arsov T, Larter CZ, Nolan CJ et al (2006) Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochem Biophys Res Commun 342:1152-1159

    Article  CAS  PubMed  Google Scholar 

  111. Collin GB, Cyr E, Bronson R et al (2005) Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum Mol Genet 14:2323-2333

    Article  CAS  PubMed  Google Scholar 

  112. Li G, Vega R, Nelms K et al (2007) A role for Alstrom syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet 3:e8

    Article  PubMed  CAS  Google Scholar 

  113. Yoo SY, Pennesi ME, Weeber EJ et al (2003) SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 37:383-401

    Article  CAS  PubMed  Google Scholar 

  114. Davis RE, Swiderski RE, Rahmouni K et al (2007) A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc Natl Acad Sci U S A 104:19422-19427

    Article  CAS  PubMed  Google Scholar 

  115. Nishimura DY, Fath M, Mullins RF et al (2004) Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci U S A 101:16588-16593

    Article  CAS  PubMed  Google Scholar 

  116. Mykytyn K, Mullins RF, Andrews M et al (2004) Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci U S A 101:8664-8669

    Article  CAS  PubMed  Google Scholar 

  117. Kulaga HM, Leitch CC, Eichers ER et al (2004) Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet 36:994-998

    Article  CAS  PubMed  Google Scholar 

  118. Marmorstein LY, Wu J, McLaughlin P et al (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol 127:577-589

    Article  CAS  PubMed  Google Scholar 

  119. Guziewicz KE, Zangerl B, Lindauer SJ et al (2007) Bestrophin gene mutations cause canine multifocal retinopathy: a novel animal model for best disease. Invest Ophthalmol Vis Sci 48:1959-1967

    Article  PubMed  Google Scholar 

  120. Shah GN, Ulmasov B, Waheed A et al (2005) Carbonic anhydrase IV and XIV knockout mice: roles of the respective carbonic anhydrases in buffering the extracellular space in brain. Proc Natl Acad Sci U S A 102:16771-16776

    Article  CAS  PubMed  Google Scholar 

  121. Haeseleer F, Imanishi Y, Maeda T et al (2004) Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 7:1079-1087

    Article  CAS  PubMed  Google Scholar 

  122. Chang B, Heckenlively JR, Bayley PR et al (2006) The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis Neurosci 23:11-24

    Article  PubMed  Google Scholar 

  123. Mansergh F, Orton NC, Vessey JP et al (2005) Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum Mol Genet 14:3035-3046

    Article  CAS  PubMed  Google Scholar 

  124. Wycisk KA, Budde B, Feil S et al (2006) Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Invest Ophthalmol Vis Sci 47:3523-3530

    Article  PubMed  Google Scholar 

  125. Wilson SM, Householder DB, Coppola V et al (2001) Mutations in Cdh23 cause nonsyndromic hearing loss in waltzer mice. Genomics 74:228-233

    Article  CAS  PubMed  Google Scholar 

  126. Di Palma F, Holme RH, Bryda EC et al (2001) Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 27:103-107

    Article  PubMed  Google Scholar 

  127. Radice GL, Ferreira-Cornwell MC, Robinson SD et al (1997) Precocious mammary gland development in P-cadherin-deficient mice. J Cell Biol 139:1025-1032

    Article  CAS  PubMed  Google Scholar 

  128. Chang B, Khanna H, Hawes N et al (2006) In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet 15:1847-1857

    Article  CAS  PubMed  Google Scholar 

  129. Pickering MC, Cook HT, Warren J et al (2002) Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 31:424-428

    CAS  PubMed  Google Scholar 

  130. Coffey PJ, Gias C, McDermott CJ et al (2007) Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci U S A 104:16651-16656

    Article  CAS  PubMed  Google Scholar 

  131. van den Hurk JA, Hendriks W, van de Pol DJ et al (1997) Mouse choroideremia gene mutation causes photoreceptor cell degeneration and is not transmitted through the female germline. Hum Mol Genet 6:851-858

    Article  PubMed  Google Scholar 

  132. Tolmachova T, Anders R, Abrink M et al (2006) Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. J Clin Invest 116:386-394

    Article  CAS  PubMed  Google Scholar 

  133. Seigel GM, Lotery A, Kummer A et al (2002) Retinal pathology and function in a Cln3 knockout mouse model of juvenile Neuronal Ceroid Lipofuscinosis (batten disease). Mol Cell Neurosci 19:515-527

    Article  CAS  PubMed  Google Scholar 

  134. Cotman SL, Vrbanac V, Lebel LA et al (2002) Cln3(Deltaex7/8) knock-in mice with the common JNCL mutation exhibit progressive neurologic disease that begins before birth. Hum Mol Genet 11:2709-2721

    Article  CAS  PubMed  Google Scholar 

  135. Biel M, Seeliger M, Pfeifer A et al (1999) Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci U S A 96:7553-7557

    Article  CAS  PubMed  Google Scholar 

  136. Huttl S, Michalakis S, Seeliger M et al (2005) Impaired channel targeting and retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGB1. J Neurosci 25:130-138

    Article  PubMed  CAS  Google Scholar 

  137. Sidjanin DJ, Lowe JK, McElwee JL et al (2002) Canine CNGB3 mutations establish cone degeneration as orthologous to the human achromatopsia locus ACHM3. Hum Mol Genet 11:1823-1833

    Article  CAS  PubMed  Google Scholar 

  138. Seegmiller R, Fraser FC, Sheldon H (1971) A new chondrodystrophic mutant in mice. Electron microscopy of normal and abnormal chondrogenesis. J Cell Biol 48: 580-593

    Article  CAS  PubMed  Google Scholar 

  139. Garofalo S, Vuorio E, Metsaranta M et al (1991) Reduced amounts of cartilage collagen fibrils and growth plate anomalies in transgenic mice harboring a glycine-to-cysteine mutation in the mouse type II procollagen alpha 1-chain gene. Proc Natl Acad Sci U S A 88:9648-9652

    Article  CAS  PubMed  Google Scholar 

  140. Li SW, Prockop DJ, Helminen H et al (1995) Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes Dev 9:2821-2830

    Article  CAS  PubMed  Google Scholar 

  141. Donahue LR, Chang B, Mohan S et al (2003) A missense mutation in the mouse Col2a1 gene causes spondyloepiphyseal dysplasia congenita, hearing loss, and retinoschisis. J Bone Miner Res 18:1612-1621

    Article  CAS  PubMed  Google Scholar 

  142. Fassler R, Schnegelsberg PN, Dausman J et al (1994) Mice lacking alpha 1 (IX) collagen develop noninflammatory degenerative joint disease. Proc Natl Acad Sci U S A 91:5070-5074

    Article  CAS  PubMed  Google Scholar 

  143. Mehalow AK, Kameya S, Smith RS et al (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 12:2179-2189

    Article  CAS  PubMed  Google Scholar 

  144. van de Pavert SA, Kantardzhieva A, Malysheva A et al (2004) Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J Cell Sci 117:4169-4177

    Article  PubMed  CAS  Google Scholar 

  145. van de Pavert SA, Meuleman J, Malysheva A et al (2007) A single amino acid substitution (Cys249Trp) in Crb1 causes retinal degeneration and deregulates expression of pituitary tumor transforming gene Pttg1. J Neurosci 27:564-573

    Article  PubMed  CAS  Google Scholar 

  146. Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL (1999) Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 23:466-470

    Article  CAS  PubMed  Google Scholar 

  147. LANE PW (1963) Whirler mice: a recessive behavior mutation in linkage group VIII. J Hered 54:263-266

    CAS  PubMed  Google Scholar 

  148. Pillers DA, Weleber RG, Green DG et al (1999) Effects of dystrophin isoforms on signal transduction through neural retina: genotype-phenotype analysis of duchenne muscular dystrophy mouse mutants. Mol Genet Metab 66:100-110

    Article  CAS  PubMed  Google Scholar 

  149. Marmorstein LY, McLaughlin PJ, Peachey NS, Sasaki T, Marmorstein AD (2007) Formation and progression of sub-retinal pigment epithelium deposits in Efemp1 mutation knock-in mice: a model for the early pathogenic course of macular degeneration. Hum Mol Genet 16:2423-2432

    Article  CAS  PubMed  Google Scholar 

  150. McLaughlin PJ, Bakall B, Choi J et al (2007) Lack of fibulin-3 causes early aging and herniation, but not macular degeneration in mice. Hum Mol Genet 16:3059-3070

    Article  CAS  PubMed  Google Scholar 

  151. Fu L, Garland D, Yang Z et al (2007) The R345W mutation in EFEMP1 is pathogenic and causes AMD-like deposits in mice. Hum Mol Genet 16:2411-2422

    Article  CAS  PubMed  Google Scholar 

  152. McMahon A, Butovich IA, Mata NL et al (2007) Retinal pathology and skin barrier defect in mice carrying a Stargardt disease-3 mutation in elongase of very long chain fatty acids-4. Mol Vis 13:258-272

    CAS  PubMed  Google Scholar 

  153. Vasireddy V, Jablonski MM, Mandal MN et al (2006) Elovl4 5-bp-deletion knock-in mice develop progressive photoreceptor degeneration. Invest Ophthalmol Vis Sci 47:4558-4568

    Article  PubMed  Google Scholar 

  154. Li W, Chen Y, Cameron DJ et al (2007) Elovl4 haploinsufficiency does not induce early onset retinal degeneration in mice. Vision Res 47:714-722

    Article  CAS  PubMed  Google Scholar 

  155. Yokokura S, Wada Y, Nakai S et al (2005) Targeted disruption of FSCN2 gene induces retinopathy in mice. Invest Ophthalmol Vis Sci 46:2905-2915

    Article  PubMed  Google Scholar 

  156. Wang Y, Huso D, Cahill H, Ryugo D, Nathans J (2001) Progressive cerebellar, auditory, and esophageal dysfunction caused by targeted disruption of the frizzled-4 gene. J Neurosci 21:4761-4771

    CAS  PubMed  Google Scholar 

  157. Calvert PD, Krasnoperova NV, Lyubarsky AL et al (2000) Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha-subunit. Proc Natl Acad Sci U S A 97:13913-13918

    Article  CAS  PubMed  Google Scholar 

  158. Chang B, Dacey MS, Hawes NL et al (2006) Cone photoreceptor function loss-3, a novel mouse model of achromatopsia due to a mutation in Gnat2. Invest Ophthalmol Vis Sci 47:5017-5021

    Article  PubMed  Google Scholar 

  159. McMillan DR, White PC (2004) Loss of the transmembrane and cytoplasmic domains of the very large G-protein-coupled receptor-1 (VLGR1 or Mass1) causes audiogenic seizures in mice. Mol Cell Neurosci 26:322-329

    Article  CAS  PubMed  Google Scholar 

  160. Chen CK, Burns ME, Spencer M et al (1999) Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci U S A 96:3718-3722

    Article  CAS  PubMed  Google Scholar 

  161. Masu M, Iwakabe H, Tagawa Y et al (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80:757-765

    Article  CAS  PubMed  Google Scholar 

  162. Mendez A, Burns ME, Sokal I et al (2001) Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc Natl Acad Sci U S A 98:9948-9953

    Article  CAS  PubMed  Google Scholar 

  163. Howes KA, Pennesi ME, Sokal I et al (2002) GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice. EMBO J 21:1545-1554

    Article  CAS  PubMed  Google Scholar 

  164. Olshevskaya EV, Calvert PD, Woodruff ML et al (2004) The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice. J Neurosci 24:6078-6085

    Article  CAS  PubMed  Google Scholar 

  165. Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL (1999) Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 19:5889-5897

    CAS  PubMed  Google Scholar 

  166. Walz A, Feinstein P, Khan M, Mombaerts P (2007) Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134:4063-4072

    Article  CAS  PubMed  Google Scholar 

  167. Hu J, Zhong C, Ding C et al (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953-957

    Article  CAS  PubMed  Google Scholar 

  168. Semple-Rowland SL, Lee NR, Van Hooser JP, Palczewski K, Baehr W (1998) A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype. Proc Natl Acad Sci U S A 95:1271-1276

    Article  CAS  PubMed  Google Scholar 

  169. Gu JJ, Tolin AK, Jain J, Huang H, Santiago L, Mitchell BS (2003) Targeted disruption of the inosine 5′-monophosphate dehydrogenase type I gene in mice. Mol Cell Biol 23:6702-6712

    Article  CAS  PubMed  Google Scholar 

  170. Yokoyama T, Copeland NG, Jenkins NA, Montgomery CA, Elder FF, Overbeek PA (1993) Reversal of left-right asymmetry: a situs inversus mutation. Science 260:679-682

    Article  CAS  PubMed  Google Scholar 

  171. Xue Y, Gao X, Lindsell CE et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723-730

    Article  CAS  PubMed  Google Scholar 

  172. Batten ML, Imanishi Y, Maeda T et al (2004) Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J Biol Chem 279:10422-10432

    Article  CAS  PubMed  Google Scholar 

  173. Liu L, Gudas LJ (2005) Disruption of the lecithin: retinol acyltransferase gene makes mice more susceptible to vitamin A deficiency. J Biol Chem 280:40226-40234

    Google Scholar 

  174. Ruiz A, Ghyselinck NB, Mata N et al (2007) Somatic ablation of the Lrat gene in the mouse retinal pigment epithelium drastically reduces its retinoid storage. Invest Ophthalmol Vis Sci 48:5377-5387

    Article  PubMed  Google Scholar 

  175. Holmen SL, Giambernardi TA, Zylstra CR et al (2004) Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res 19:2033-2040

    Article  CAS  PubMed  Google Scholar 

  176. Xia CH, Liu H, Cheung D et al (2008) A model for familial exudative vitreoretinopathy caused by LPR5 mutations. Hum Mol Genet 17:1605-1612

    Article  CAS  PubMed  Google Scholar 

  177. Camenisch TD, Koller BH, Earp HS, Matsushima GK (1999) A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J Immunol 162:3498-3503

    CAS  PubMed  Google Scholar 

  178. Chen C, Li Q, Darrow AL et al (2004) Mer receptor tyrosine kinase signaling participates in platelet function. Arterioscler Thromb Vasc Biol 24:1118-1123

    Article  CAS  PubMed  Google Scholar 

  179. Lu Q, Gore M, Zhang Q et al (1999) Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398:723-728

    Article  CAS  PubMed  Google Scholar 

  180. Hawes NL, Chang B, Hageman GS et al (2000) Retinal degeneration 6 (rd6): a new mouse model for human retinitis punctata albescens. Invest Ophthalmol Vis Sci 41:3149-3157

    CAS  PubMed  Google Scholar 

  181. Fath MA, Mullins RF, Searby C et al (2005) Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Hum Mol Genet 14:1109-1118

    Article  CAS  PubMed  Google Scholar 

  182. Ross AJ, May-Simera H, Eichers ER et al (2005) Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 37:1135-1140

    Article  CAS  PubMed  Google Scholar 

  183. Raabe M, Flynn LM, Zlot CH et al (1998) Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc Natl Acad Sci U S A 95:8686-8691

    Article  CAS  PubMed  Google Scholar 

  184. Gibson F, Walsh J, Mburu P et al (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374:62-64

    Article  CAS  PubMed  Google Scholar 

  185. Berger W, van de Pol D, Bachner D et al (1996) An animal model for Norrie disease (ND): gene targeting of the mouse ND gene. Hum Mol Genet 5:51-59

    Article  CAS  PubMed  Google Scholar 

  186. Takahashi H, Ueyama Y, Hibino T et al (1986) A new mouse model of genetically transmitted polycystic kidney disease. J Urol 135:1280-1283

    CAS  PubMed  Google Scholar 

  187. Akhmedov NB, Piriev NI, Chang B et al (2000) A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc Natl Acad Sci U S A 97:5551-5556

    Article  CAS  PubMed  Google Scholar 

  188. Webber AL, Hodor P, Thut CJ et al (2008) Dual role of Nr2e3 in photoreceptor development and maintenance. Exp Eye Res 87:35-48

    Article  CAS  PubMed  Google Scholar 

  189. Mears AJ, Kondo M, Swain PK et al (2001) Nrl is required for rod photoreceptor development. Nat Genet 29:447-452

    Article  CAS  PubMed  Google Scholar 

  190. Pardue MT, McCall MA, LaVail MM, Gregg RG, Peachey NS (1998) A naturally occurring mouse model of X-linked congenital stationary night blindness. Invest Ophthalmol Vis Sci 39:2443-2449

    CAS  PubMed  Google Scholar 

  191. Wang T, Lawler AM, Steel G, Sipila I, Milam AH, Valle D (1995) Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet 11:185-190

    Article  PubMed  Google Scholar 

  192. Davies VJ, Hollins AJ, Piechota MJ et al (2007) Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 16:1307-1318

    Article  CAS  PubMed  Google Scholar 

  193. Smallwood PM, Olveczky BP, Williams GL et al (2003) Genetically engineered mice with an additional class of cone photoreceptors: implications for the evolution of color vision. Proc Natl Acad Sci U S A 100:11706-11711

    Article  CAS  PubMed  Google Scholar 

  194. Kuo YM, Duncan JL, Westaway SK et al (2005) Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum Mol Genet 14:49-57

    Article  CAS  PubMed  Google Scholar 

  195. Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057-4065

    CAS  PubMed  Google Scholar 

  196. Alur RP, Cox TA, Crawford MA, Gong X, Brooks BP (2008) Optic nerve axon number in mouse is regulated by PAX2. J AAPOS 12:117-121

    Article  PubMed  Google Scholar 

  197. RJn H-W, Ahmed ZM, Kjellstrom S et al (2006) Ames Waltzer deaf mice have reduced electroretinogram amplitudes and complex alternative splicing of Pcdh15 transcripts. Invest Ophthalmol Vis Sci 47:3074-3084

    Article  Google Scholar 

  198. Chang B, Hawes NL, Pardue MT et al (2007) Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vision Res 47:624-633

    Article  CAS  PubMed  Google Scholar 

  199. Brites P, Motley AM, Gressens P et al (2003) Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Hum Mol Genet 12:2255-2267

    Article  CAS  PubMed  Google Scholar 

  200. Acland GM, Ray K, Mellersh CS et al (1998) Linkage analysis and comparative mapping of canine progressive rod-cone degeneration (prcd) establishes potential locus homology with retinitis pigmentosa (RP17) in humans. Proc Natl Acad Sci U S A 95:3048-3053

    Article  CAS  PubMed  Google Scholar 

  201. Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111-2120

    CAS  PubMed  Google Scholar 

  202. Graziotto JJ, Inglehearn CF, Pack MA, Pierce EA (2008) Decreased levels of the RNA splicing factor Prpf3 in mice and zebrafish do not cause photoreceptor degeneration. Invest Ophthalmol Vis Sci 49:3830-3838

    Article  PubMed  Google Scholar 

  203. Ma J, Norton JC, Allen AC et al (1995) Retinal degeneration slow (rds) in mouse results from simple insertion of a t haplotype-specific element into protein-coding exon II. Genomics 28:212-219

    Article  CAS  PubMed  Google Scholar 

  204. Kedzierski W, Nusinowitz S, Birch D et al (2001) Deficiency of rds/peripherin causes photoreceptor death in mouse models of digenic and dominant retinitis pigmentosa. Proc Natl Acad Sci U S A 98:7718-7723

    Article  CAS  PubMed  Google Scholar 

  205. McNally N, Kenna PF, Rancourt D et al (2002) Murine model of autosomal dominant retinitis pigmentosa generated by targeted deletion at codon 307 of the rds-peripherin gene. Hum Mol Genet 11:1005-1016

    Article  CAS  PubMed  Google Scholar 

  206. Ding XQ, Nour M, Ritter LM, Goldberg AF, Fliesler SJ, Naash MI (2004) The R172W mutation in peripherin/rds causes a cone-rod dystrophy in transgenic mice. Hum Mol Genet 13:2075-2087

    Article  CAS  PubMed  Google Scholar 

  207. Nour M, Ding XQ, Stricker H, Fliesler SJ, Naash MI (2004) Modulating expression of peripherin/rds in transgenic mice: critical levels and the effect of overexpression. Invest Ophthalmol Vis Sci 45:2514-2521

    Article  PubMed  Google Scholar 

  208. Faust PL, Hatten ME (1997) Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. J Cell Biol 139:1293-1305

    Article  CAS  PubMed  Google Scholar 

  209. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359:295-300

    Article  CAS  PubMed  Google Scholar 

  210. Sun H, Chang Y, Schweers B et al (2006) An E2F binding-deficient Rb1 protein partially rescues developmental defects associated with Rb1 nullizygosity. Mol Cell Biol 26:1527-1537

    Article  CAS  PubMed  Google Scholar 

  211. Quadro L, Blaner WS, Salchow DJ et al (1999) Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J 18:4633-4644

    Article  CAS  PubMed  Google Scholar 

  212. Chang B, Heckenlively JR, Hawes NL, Roderick TH (1993) New mouse primary retinal degeneration (rd-3). Genomics 16:45-49

    Article  CAS  PubMed  Google Scholar 

  213. Friedman JS, Chang B, Kannabiran C et al (2006) Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration. Am J Hum Genet 79:1059-1070

    Article  CAS  PubMed  Google Scholar 

  214. Maeda A, Maeda T, Imanishi Y et al (2006) Retinol dehydrogenase (RDH12) protects photoreceptors from light-induced degeneration in mice. J Biol Chem 281:37697-37704

    Article  CAS  PubMed  Google Scholar 

  215. Kurth I, Thompson DA, Ruther K et al (2007) Targeted disruption of the murine retinal dehydrogenase gene Rdh12 does not limit visual cycle function. Mol Cell Biol 27:1370-1379

    Article  CAS  PubMed  Google Scholar 

  216. Driessen CA, Winkens HJ, Hoffmann K et al (2000) Disruption of the 11-cis-retinol dehydrogenase gene leads to accumulation of cis-retinols and cis-retinyl esters. Mol Cell Biol 20:4275-4287

    Article  CAS  PubMed  Google Scholar 

  217. Shang E, Lai K, Packer AI et al (2002) Targeted disruption of the mouse cis-retinol dehydrogenase gene: visual and nonvisual functions. J Lipid Res 43:590-597

    CAS  PubMed  Google Scholar 

  218. Chen P, Hao W, Rife L et al (2001) A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet 28:256-260

    Article  CAS  PubMed  Google Scholar 

  219. Chen CK, Burns ME, He W, Wensel TG, Baylor DA, Simon MI (2000) Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature 403:557-560

    Article  CAS  PubMed  Google Scholar 

  220. Keresztes G, Martemyanov KA, Krispel CM et al (2004) Absence of the RGS9.Gbeta5 GTPase-activating complex in photoreceptors of the R9AP knockout mouse. J Biol Chem 279:1581-1584

    Article  CAS  PubMed  Google Scholar 

  221. Olsson JE, Gordon JW, Pawlyk BS et al (1992) Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 9:815-830

    Article  CAS  PubMed  Google Scholar 

  222. Naash MI, Hollyfield JG, al-Ubaidi MR, Baehr W (1993) Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc Natl Acad Sci U S A 90:5499-5503

    Article  CAS  PubMed  Google Scholar 

  223. Humphries MM, Rancourt D, Farrar GJ et al (1997) Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet 15:216-219

    Article  CAS  PubMed  Google Scholar 

  224. Lem J, Krasnoperova NV, Calvert PD et al (1999) Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc Natl Acad Sci U S A 96:736-741

    Article  CAS  PubMed  Google Scholar 

  225. Wang Z, Wen XH, Ablonczy Z, Crouch RK, Makino CL, Lem J (2005) Enhanced shutoff of phototransduction in transgenic mice expressing palmitoylation-deficient rhodopsin. J Biol Chem 280:24293-24300

    Article  CAS  PubMed  Google Scholar 

  226. Imai H, Kefalov V, Sakurai K et al (2007) Molecular properties of rhodopsin and rod function. J Biol Chem 282:6677-6684

    Article  CAS  PubMed  Google Scholar 

  227. Li T, Snyder WK, Olsson JE, Dryja TP (1996) Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci U S A 93:14176-14181

    Article  CAS  PubMed  Google Scholar 

  228. Petters RM, Alexander CA, Wells KD et al (1997) Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15:965-970

    Article  CAS  PubMed  Google Scholar 

  229. Lewin AS, Drenser KA, Hauswirth WW et al (1998) Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med 4:967-971

    Article  CAS  PubMed  Google Scholar 

  230. Liu C, Li Y, Peng M, Laties AM, Wen R (1999) Activation of caspase-3 in the retina of transgenic rats with the rhodopsin mutation s334ter during photoreceptor degeneration. J Neurosci 19:4778-4785

    CAS  PubMed  Google Scholar 

  231. Tam BM, Moritz OL (2007) Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. J Neurosci 27:9043-9053

    Article  CAS  PubMed  Google Scholar 

  232. Schoch S, Castillo PE, Jo T et al (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321-326

    Article  CAS  PubMed  Google Scholar 

  233. Saari JC, Nawrot M, Kennedy BN et al (2001) Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29:739-748

    Article  CAS  PubMed  Google Scholar 

  234. Clarke G, Goldberg AF, Vidgen D et al (2000) Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat Genet 25:67-73

    Article  CAS  PubMed  Google Scholar 

  235. Gao J, Cheon K, Nusinowitz S et al (2002) Progressive photoreceptor degeneration, outer segment dysplasia, and rhodopsin mislocalization in mice with targeted disruption of the retinitis pigmentosa-1 (Rp1) gene. Proc Natl Acad Sci U S A 99:5698-5703

    Article  CAS  PubMed  Google Scholar 

  236. Liu Q, Lyubarsky A, Skalet JH, Pugh ENJ, Pierce EA (2003) RP1 is required for the correct stacking of outer segment discs. Invest Ophthalmol Vis Sci 44:4171-4183

    Article  PubMed  Google Scholar 

  237. Acland GM, Blanton SH, Hershfield B, Aguiree GD (1994) XLPRA: a canine retinal degeneration inherited as an X-linked trait. Am J Med Genet 52:27-33

    Article  CAS  PubMed  Google Scholar 

  238. Pang JJ, Chang B, Hawes NL et al (2005) Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis 11:152-162

    CAS  PubMed  Google Scholar 

  239. Hong DH, Pawlyk BS, Shang J, Sandberg MA, Berson EL, Li T (2000) A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci U S A 97:3649-3654

    Article  CAS  PubMed  Google Scholar 

  240. Hong DH, Pawlyk BS, Adamian M, Li T (2004) Dominant, gain-of-function mutant produced by truncation of RPGR. Invest Ophthalmol Vis Sci 45:36-41

    Article  PubMed  Google Scholar 

  241. Zhao Y, Hong DH, Pawlyk B et al (2003) The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc Natl Acad Sci U S A 100:3965-3970

    Article  CAS  PubMed  Google Scholar 

  242. Mellersh CS, Boursnell ME, Pettitt L et al (2006) Canine RPGRIP1 mutation establishes cone-rod dystrophy in miniature longhaired dachshunds as a homologue of human Leber congenital amaurosis. Genomics 88:293-301

    Article  CAS  PubMed  Google Scholar 

  243. Vierkotten J, Dildrop R, Peters T, Wang B, Ruther U (2007) Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134:2569-2577

    Article  CAS  PubMed  Google Scholar 

  244. Weber BH, Schrewe H, Molday LL et al (2002) Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure. Proc Natl Acad Sci U S A 99:6222-6227

    Article  CAS  PubMed  Google Scholar 

  245. Zeng Y, Takada Y, Kjellstrom S et al (2004) RS-1 gene delivery to an adult Rs1h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked retinoschisis. Invest Ophthalmol Vis Sci 45:3279-3285

    Article  PubMed  Google Scholar 

  246. Jablonski MM, Dalke C, Wang X et al (2005) An ENU-induced mutation in Rs1h causes disruption of retinal structure and function. Mol Vis 11:569-581

    CAS  PubMed  Google Scholar 

  247. Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389:505-509

    Article  CAS  PubMed  Google Scholar 

  248. Rice DS, Huang W, Jones HA et al (2004) Severe retinal degeneration associated with disruption of semaphorin 4A. Invest Ophthalmol Vis Sci 45:2767-2777

    Article  PubMed  Google Scholar 

  249. Chen Z, Friedrich GA, Soriano P (1994) Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 8:2293-2301

    Article  CAS  PubMed  Google Scholar 

  250. Sawada A, Kiyonari H, Ukita K, Nishioka N, Imuta Y, Sasaki H (2008) Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol Cell Biol 28:3177-3189

    Article  CAS  PubMed  Google Scholar 

  251. Weber BH, Lin B, White K et al (2002) A mouse model for Sorsby fundus dystrophy. Invest Ophthalmol Vis Sci 43:2732-2740

    PubMed  Google Scholar 

  252. Janssen A, Hoellenriegel J, Fogarasi M et al (2008) Abnormal vessel formation in the choroid of mice lacking tissue inhibitor of metalloprotease-3. Invest Ophthalmol Vis Sci 49:2812-2822

    Article  PubMed  Google Scholar 

  253. Jishage K, Arita M, Igarashi K et al (2001) Alpha-tocopherol transfer protein is important for the normal development of placental labyrinthine trophoblasts in mice. J Biol Chem 276:1669-1672

    Article  CAS  PubMed  Google Scholar 

  254. Ikeda S, Shiva N, Ikeda A et al (2000) Retinal degeneration but not obesity is observed in null mutants of the tubby-like protein 1 gene. Hum Mol Genet 9:155-163

    Article  CAS  PubMed  Google Scholar 

  255. Kobayashi A, Higashide T, Hamasaki D et al (2000) HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Invest Ophthalmol Vis Sci 41:3268-3277

    CAS  PubMed  Google Scholar 

  256. Ishiba Y, Higashide T, Mori N et al (2007) Targeted inactivation of synaptic HRG4 (UNC119) causes dysfunction in the distal photoreceptor and slow retinal degeneration, revealing a new function. Exp Eye Res 84:473-485

    Article  CAS  PubMed  Google Scholar 

  257. Johnson KR, Gagnon LH, Webb LS et al (2003) Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum Mol Genet 12:3075-3086

    Article  CAS  PubMed  Google Scholar 

  258. Lefevre G, Michel V, Weil D et al (2008) A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth. Development 135:1427-1437

    Article  CAS  PubMed  Google Scholar 

  259. Lentz J, Pan F, Ng SS, Deininger P, Keats B (2007) Ush1c216A knock-in mouse survives Katrina. Mutat Res 616:139-144

    CAS  PubMed  Google Scholar 

  260. Kitamura K, Kakoi H, Yoshikawa Y, Ochikubo F (1992) Ultrastructural findings in the inner ear of Jackson shaker mice. Acta Otolaryngol 112:622-627

    Article  CAS  PubMed  Google Scholar 

  261. Kikkawa Y, Shitara H, Wakana S et al (2003) Mutations in a new scaffold protein Sans cause deafness in Jackson shaker mice. Hum Mol Genet 12:453-461

    Article  CAS  PubMed  Google Scholar 

  262. Liu X, Bulgakov OV, Darrow KN et al (2007) Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A 104:4413-4418

    Article  CAS  PubMed  Google Scholar 

  263. Yamamura H, Zhang M, Markwald RR, Mjaatvedt CH (1997) A heart segmental defect in the anterior-posterior axis of a transgenic mutant mouse. Dev Biol 186:58-72

    CAS  PubMed  Google Scholar 

  264. Ishihara H, Takeda S, Tamura A et al (2004) Disruption of the WFS1 gene in mice causes progressive beta-cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum Mol Genet 13:1159-1170

    Article  CAS  PubMed  Google Scholar 

  265. Riggs AC, Bernal-Mizrachi E, Ohsugi M et al (2005) Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48:2313-2321

    Article  CAS  PubMed  Google Scholar 

  266. Neuhauss SC, Seeliger MW, Schepp CP, Biehlmaier O (2003) Retinal defects in the zebrafish bleached mutant. Doc Ophthalmol 107:71-78

    Article  PubMed  Google Scholar 

  267. Drummond IA, Majumdar A, Hentschel H et al (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125:4655-4667

    CAS  PubMed  Google Scholar 

  268. Biehlmaier O, Neuhauss SC, Kohler K (2003) Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina. J Neurobiol 56:222-236

    Article  CAS  PubMed  Google Scholar 

  269. Biehlmaier O, Makhankov Y, Neuhauss SC (2007) Impaired retinal differentiation and maintenance in zebrafish laminin mutants. Invest Ophthalmol Vis Sci 48:2887-2894

    Article  PubMed  Google Scholar 

  270. Lee J, Gross JM (2007) Laminin beta1 and gamma1 containing laminins are essential for basement membrane integrity in the zebrafish eye. Invest Ophthalmol Vis Sci 48:2483-2490

    Article  PubMed  Google Scholar 

  271. Tsujikawa M, Omori Y, Biyanwila J, Malicki J (2007) Mechanism of positioning the cell nucleus in vertebrate photoreceptors. Proc Natl Acad Sci U S A 104:14819-14824

    Article  CAS  PubMed  Google Scholar 

  272. Del Bene F, Wehman AM, Link BA, Baier H (2008) Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134:1055-1065

    Article  PubMed  CAS  Google Scholar 

  273. Li L, Dowling JE (1997) A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proc Natl Acad Sci U S A 94:11645-11650

    Article  CAS  PubMed  Google Scholar 

  274. Li L, Dowling JE (2000) Disruption of the olfactoretinal centrifugal pathway may relate to the visual system defect in night blindness b mutant zebrafish. J Neurosci 20:1883-1892

    CAS  PubMed  Google Scholar 

  275. Maaswinkel H, Mason B, Li L (2003) ENU-induced late-onset night blindness associated with rod photoreceptor cell degeneration in zebrafish. Mech Ageing Dev 124:1065-1071

    Article  CAS  PubMed  Google Scholar 

  276. Maaswinkel H, Riesbeck LE, Riley ME et al (2005) Behavioral screening for nightblindness mutants in zebrafish reveals three new loci that cause dominant photoreceptor cell degeneration. Mech Ageing Dev 126:1079-1089

    Article  CAS  PubMed  Google Scholar 

  277. Brockerhoff SE, Rieke F, Matthews HR et al (2003) Light stimulates a transducin-independent increase of cytoplasmic Ca2+ and suppression of current in cones from the zebrafish mutant nof. J Neurosci 23:470-480

    CAS  PubMed  Google Scholar 

  278. Taylor MR, Kikkawa S, Diez-Juan A et al (2005) The zebrafish pob gene encodes a novel protein required for survival of red cone photoreceptor cells. Genetics 170:263-273

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Samardzija, M., Neuhauss, S.C.F., Joly, S., Kurz-Levin, M., Grimm, C. (2010). Animal Models for Retinal Degeneration. In: Pang, IH., Clark, A. (eds) Animal Models for Retinal Diseases. Neuromethods, vol 46. Humana Press. https://doi.org/10.1007/978-1-60761-541-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-541-5_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-540-8

  • Online ISBN: 978-1-60761-541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics