Skip to main content

Molecular Simulations of Antimicrobial Peptides

  • Protocol
  • First Online:
Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 618))

Abstract

Recent advances in molecular dynamics (MD) simulation methods and in available computational resources have allowed for more reliable simulations of biological phenomena. From all-atom MD simulations, we are now able to visualize in detail the interactions between antimicrobial peptides (AMPs) and a variety of membrane mimics. This helps us to understand the molecular mechanisms of antimicrobial activity and toxicity. This chapter describes how to set up and conduct molecular dynamics simulations of AMPs and membrane mimics. Details are given for the construction of systems of interest for studying AMPs, which can include simulations of peptides in water, micelles, or lipid bilayers. Explanations of the parameters needed for running a simulation are provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, M. P. and Tildesley, D. J. (1987) Computer Simulations of Liquids. Oxford: Clarendon Press.

    Google Scholar 

  2. Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., III, DeBolt, S., Ferguson, D., Seibel, G., and Kollman, P. (1995) Amber, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Comp. Phys. Commun. 91, 1–41.

    Article  CAS  Google Scholar 

  3. Jorgensen, W. L. and Tirado-Rives, J. (1988) The OPLS [optimized potentials for lipid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666.

    Article  CAS  Google Scholar 

  4. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics simulations. J. Comp. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  5. Berendsen, H. J. C., van der Spoel, D. L., and van Drunen, R. (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91, 43–56.

    Article  CAS  Google Scholar 

  6. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.

    Article  PubMed  CAS  Google Scholar 

  7. Patra, M., Karttunen, M., Hyvönen, M. T., Falck, E., Lindqvist, P., and Vattulainen, I. (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J. 84, 3636–3645.

    Article  PubMed  CAS  Google Scholar 

  8. Martyna, G. J., Tobias, D. J., and Klein, M. L. (1994) Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189.

    Article  CAS  Google Scholar 

  9. Feller, S. E., Zhang, Y., Pastor, R. W., and Brooks, B. R. (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613–4621.

    Article  CAS  Google Scholar 

  10. Bhandarkar, M., Brunner, R., Chipot, C., Dalke, A., Dixit, S., Grayson, P., Gullingsrud, J., Gursoy, A., Hardy, D., Hénin, J., Humphrey, W., Hurwitz, D., Krawetz, N., Kumar, S., Nelson, M., Phillips, J., Shinozaki, A., Zheng, G., and Zhu, F. (2005) NAMD User’s Guide Version 2.6b1. Urbana: Theoretical Biophysics Group, University of Illinois and Beckman Institute.

    Google Scholar 

  11. Leontiadou, H., Mark, A. E., and Marrink, S. J. (2006) Antimicrobial peptides in action. J. Am. Chem. Soc. 128, 12156–12161.

    Article  PubMed  CAS  Google Scholar 

  12. Roux, B. and Simonson, T. (1999) Implicit solvent models. Biophys. Chem. 78, 1–20.

    Article  PubMed  CAS  Google Scholar 

  13. Dominy, B. N. (1999) Parameterization and application of an implicit solvent model for macromolecules. Mol. Simulat. 24, 259–274.

    Article  Google Scholar 

  14. Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat. Rev. Microbiol. 3, 238–250.

    Article  PubMed  CAS  Google Scholar 

  15. Kandasamy, S. K. and Larson, R. G. (2007) Binding modes of protegrin-1, a beta-strand antimicrobial peptide, in lipid bilayers. Mol. Simulat. 33, 799–807.

    Article  CAS  Google Scholar 

  16. Leontiadou, H., Mark, A. E., and Marrink, S. J. (2007) Ion transport across transmembrane pores. Biophys. J. 92, 4209–4215.

    Article  PubMed  CAS  Google Scholar 

  17. Parvu, L. (2003) QSAR – a piece of drug design. J. Cell. Mol. Med. 7, 333–335.

    Article  PubMed  CAS  Google Scholar 

  18. Jenssen, H., Fjell, C. D., Cherkasov, A., and Hancock, R. E. (2008) QSAR modeling and computer-aided design of antimicrobial peptides. J. Pept. Sci. 14, 110–114.

    Article  PubMed  CAS  Google Scholar 

  19. Kaznessis, Y. N., Snow, M. E., and Blankley, C. J. (2001) Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water. J. Comput. Aid. Mol. Des. 15, 697–708.

    Article  CAS  Google Scholar 

  20. Lejon, T., Stiberg, T., Strøm, M. B., and Svendsen, J. S. (2004) Prediction of antibiotic activity and synthesis of new pentadecapeptides based on lactoferricins. J. Pept. Sci. 10, 329–335.

    Article  PubMed  CAS  Google Scholar 

  21. Lejon, T., Strom, M. B., and Svendsen, J. S. (2001) Antibiotic activity of pentadecapeptides modelled from amino acid descriptors. J. Pept. Sci. 7, 74–81.

    Article  PubMed  CAS  Google Scholar 

  22. Lejon, T., Svendsen, J. S., and Haug, B. E. (2002) Simple parameterization of non-proteinogenic amino acids for QSAR of antibacterial peptides. J. Pept. Sci. 8, 302–306.

    Article  PubMed  CAS  Google Scholar 

  23. Marrero-Ponce, Y., Torrens, F., Alvarado, Y. J., and Rotondo, R. (2006) Bond-based global and local (bond, group and bond-type) quadratic indices and their applications to computer-aided molecular design. 1. QSPR studies of diverse sets of organic chemicals. J. Comput. Aid. Mol. Des. 20, 685–701.

    Article  CAS  Google Scholar 

  24. Beswick, V., Guerois, R., Cordier-Ochsenbein, F., Coïc, Y. M., Tam, H. D., Tostain, J., Noël, J. P., Sanson, A., and Neumann, J. M. (1999) Dodecylphosphocholine micelles as a membrane-like environment: new results from NMR relaxation and paramagnetic relaxation enhancement analysis. Eur. Biophys. J. 28, 48–58.

    Article  PubMed  CAS  Google Scholar 

  25. Kallick, D. A., Tessmer, M. R., Watts, C. R., and Li, C. Y. (1995) The use of dodecylphosphocholine micelles in solution NMR. J. Magn. Reson. B 109, 60–65.

    Article  PubMed  CAS  Google Scholar 

  26. Kloosterman, D. A., Goodwin, J. T., Burton, P. S., Conradi, R. A., Stockman, B. J., Scahill, T. A., and Blinn, J. R. (2000) An NMR study of conformations of substituted dipeptides in dodecylphosphocholine micelles: implications for drug transport. Biopolymers 53, 396–410.

    Article  PubMed  CAS  Google Scholar 

  27. Lauterwein, J., Bösch, C., Brown, L. R., and Wüthrich, K. (1979) Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim. Biophys. Acta 556, 244–264.

    Article  PubMed  CAS  Google Scholar 

  28. Fernandez, C. and Wuthrich, K. (2003) NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett. 555, 144–150.

    Article  PubMed  CAS  Google Scholar 

  29. Rakitin, A. R. and Pack, G. R. (2004) Molecular dynamics simulations of ionic interactions with dodecyl sulfate micelles. J. Phys. Chem. B. 108, 2712–2716.

    Article  CAS  Google Scholar 

  30. Wymore, T., Gao, X. F., and Wong, T. C. (1999) Molecular dynamics simulation of the structure and dynamics of a dodecylphosphocholine micelle in aqueous solution. J. Mol. Struct. 485, 195–210.

    Article  Google Scholar 

  31. Wong, T. C. and Kamath, S. (2002) Molecular dynamics simulations of adrenocorticotropin (1–24) peptide in a solvated dodecylphosphocholine (DPC) micelle and in a dimyistoylphosphatidylcholine (DMPC) bilayer. J. Biomol. Struct. Dyn. 20, 39–57.

    Article  PubMed  CAS  Google Scholar 

  32. Tieleman, D. P., van der Spoel, D., and Berendsen, H. J. C. (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and lipid chain relaxation. J. Phys. Chem. B 104, 6380–6388.

    Article  CAS  Google Scholar 

  33. Shepherd, C. M., Schaus, K. A., Vogel, H. J., and Juffer, A. H. (2001) Molecular dynamics study of peptide-bilayer adsorption. Biophys. J. 80, 579–596.

    Article  PubMed  CAS  Google Scholar 

  34. Kandasamy, S. K. and Larson, R. G. (2004) Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations. Chem. Phys. Lipids 132, 113–132.

    Article  PubMed  CAS  Google Scholar 

  35. Bruce, C. D., Berkowitz, M. L., Perera, L., and Forbes, M. D. E. (2002) Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. J. Phys. Chem. B. 106, 3788–3793.

    Article  CAS  Google Scholar 

  36. MacKerell, A. D. (1995) Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: decreased fluidity of the micelle hydrocarbon interior. J. Phys. Chem. 99, 327–341.

    Article  Google Scholar 

  37. Wymore, T. and Wong, T. C. (1999) Molecular dynamics study of substance P peptides partitioned in a sodium dodecylsulfate micelle. Biophys. J. 76, 1213–1227.

    Article  PubMed  CAS  Google Scholar 

  38. Yang, S. T., Yub Shin, S. Y., Kim, Y. C., Kim, Y., Hahm, K. S., and Kim, J. I. (2002) Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem. Biophys. Res. Commun. 296, 1044–1050.

    Article  PubMed  CAS  Google Scholar 

  39. Bond, P. J., Cuthbertson, J., and Sansom, M. S. (2005) Simulation studies of the interactions between membrane proteins and detergents. Biochem. Soc. Trans. 33, 910–912.

    Article  PubMed  CAS  Google Scholar 

  40. Bond, P. J., Cuthbertson, J. M., Deol, S. S., and Sansom, M. S. (2004) MD simulations of spontaneous membrane protein/detergent micelle formation. J. Am. Chem. Soc. 126, 15948–15949.

    Article  PubMed  CAS  Google Scholar 

  41. Bond, P. J. and Sansom, M. S. (2003) Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer. J. Mol. Biol. 329, 1035–1053.

    Article  PubMed  CAS  Google Scholar 

  42. Marrink, S. J. and Mark, A. E. (2002) Molecular dynamics simulations of mixed micelles modeling human bile. Biochemistry 41, 5375–5382.

    Article  PubMed  CAS  Google Scholar 

  43. Wendoloski, J. J., Kimatian, S. J., Schutt, C. E., and Salemme, F. R. (1989) Molecular dynamics simulation of a phospholipid micelle. Science 243, 636–638.

    Article  PubMed  CAS  Google Scholar 

  44. Khandelia, H. and Kaznessis, Y. (2007) Cation-pi interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations. J. Phys. Chem. B 111, 242–250.

    Article  PubMed  CAS  Google Scholar 

  45. Langham, A. A., Ahmad, A. S., and Kaznessis, Y. N. (2008) On the nature of antimicrobial activity: a model for protegrin-1 pores. J. Am. Chem. Soc. 130, 4338–4346.

    Article  PubMed  CAS  Google Scholar 

  46. Feller, S. E. and Pastor, R. W. (1996) On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. Biophys. J. 71, 1350–1355.

    Article  PubMed  CAS  Google Scholar 

  47. Jahnig, F. (1996) What is the surface tension of a lipid bilayer membrane? Biophys. J. 71, 1348–1349.

    Article  PubMed  CAS  Google Scholar 

  48. Roux, B. (1996) Commentary: surface tension of biomembranes. Biophys. J. 71, 1346–1347.

    Article  PubMed  CAS  Google Scholar 

  49. Jensen, M. O., Mouritsen, O. G., and Peters, G. H. (2004) Simulations of a membrane-anchored peptide: structure, dynamics, and influence on bilayer properties. Biophys. J. 86, 3556–3575.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Langham, A., Kaznessis, Y.N. (2010). Molecular Simulations of Antimicrobial Peptides. In: Giuliani, A., Rinaldi, A. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 618. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-594-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-594-1_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-593-4

  • Online ISBN: 978-1-60761-594-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics