Skip to main content

Direct In Situ Hybridization with Oligonucleotide Functionalized Quantum Dot Probes

  • Protocol
  • First Online:
Fluorescence in situ Hybridization (FISH)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 659))

Abstract

Coming from the material sciences, fluorescent semiconductor nanocrystals, also known as quantum dots (QDs), have emerged as powerful fluorescent probes for a wide range of biological imaging applications. QDs have several advantages over organic dyes which include higher brightness, better resistance to photobleaching, and simplified multicolor target detection. In this chapter, we describe a rapid assay for the direct imaging of multiple repetitive subnuclear genetic sequences using QD-based FISH probes. Streptavidin-coated QDs (SAvQDs) are functionalized with short biotinylated oligonucleotides and used in a single hybridization/detection step. These QD-FISH probes penetrate both intact interphase nuclei and metaphase chromosomes and show good targeting of dense chromatin domains. Importantly, the broad absorption spectra of QDs allows two sequence specific QD-FISH probes of different colors to be simultaneously imaged with a single laser excitation wavelength. This method, which requires minimal custom conjugation, is easily expandable and offers the experimentalist a new alternative to increase flexibility in multicolor cytogenetic FISH applications of repetitive DNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medintz, I. L., Uyeda, H. T., Goldman, E. R., and Mattoussi, H. (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. 4, 435–446.

    Article  PubMed  CAS  Google Scholar 

  2. Michalet, X., Pinaud, F. F, Bentolila, L. A, Tsay, J. M, Doose, S., Li, J. J, Sundaresan, G., Wu, A. M, Gambhir, S. S, and Weiss, S. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.

    Article  PubMed  CAS  Google Scholar 

  3. Bentolila, L. A. and Weiss, S. (2006) Single-step multicolor fluorescence in situ hybridization analysis using semiconductor quantum dot-DNA conjugates. Cell Biochem. Biophys. 4, 59–70.

    Article  Google Scholar 

  4. Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2015.

    Article  PubMed  CAS  Google Scholar 

  5. Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F., and Bruchez, M. P. (2003) Immuno-fluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46.

    Article  PubMed  CAS  Google Scholar 

  6. Jaiswal, J. K., Mattoussi, H., Mauro, J. M., and Simon, S. M. (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51.

    Article  PubMed  CAS  Google Scholar 

  7. Xiao, Y. and Barker P. E. (2004) Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32, e28.

    Article  PubMed  Google Scholar 

  8. Doose, S., Tsay, J. M., Pinaud, F., and Weiss, S. (2005) Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. Anal. Chem. 77, 2235–2242.

    Article  PubMed  CAS  Google Scholar 

  9. Yu, W. W., Qu, L., Guo, W., and Peng, X. (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860.

    Article  CAS  Google Scholar 

  10. Bentolila, L. A., Michalet X., and Weiss S. (2008) Quantum optics: colloidal fluorescent semiconductor nanocrystals (quantum dots) in single-molecule detection and imaging. In: Single-Molecules and Biotechnology, (Rigler, R. and Vogel, E., Eds), Springer, Berlin, Heidelberg, pp. 53–81.

    Chapter  Google Scholar 

  11. Nederlof P. M, van der Flier, S, Wiegant, J, Raap, A. K, Tanke, H. J, Ploem, J. S, and van der Ploeg, M. (1990) Multiple fluorescence in situ hybridization. Cytometry 11, 126–131.

    Article  PubMed  CAS  Google Scholar 

  12. Alivisatos, A. P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937.

    Article  CAS  Google Scholar 

  13. Lukusaa, T. and Fryns, J. P. (2008) Human chromosome fragility. Biochim. Biophys. Acta. 1779, 3–16.

    Article  Google Scholar 

  14. Rattray, M. and Michael, G. J. (1998) Oligonucleotide probes for in situ hybridization. In: In Situ Hybridization (Wilkinson, D. G., Ed.), Oxford University Press, Oxford, pp. 23–67.

    Google Scholar 

  15. Higgins, D. G., Thompson, J. D., and Gibson, T. J. (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266, 383–402.

    Article  PubMed  CAS  Google Scholar 

  16. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  17. Lidke, D. S, Nagy, P, Heintzmann, R, Arndt-Jovin, D. J, Post, J. N, Grecco, H. E, Jares-Erijman, E. A, and Jovin, T. M (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22, 198–203.

    Article  PubMed  CAS  Google Scholar 

  18. Silver, J. and Ou, W. (2005) Photoactivation of quantum dot fluorescence following endocytosis. Nano Lett. 5, 1445–1449.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Shimon Weiss for advice and encouragement, Dr. Matthew Schibler for comments on this manuscript, and Tal Paley for her editorial assistance. Fluorescence microscopy was performed at the Advanced Light Microscopy/Spectroscopy Shared Facility at the California NanoSystems Institute at UCLA. This work was funded in part by the National Institute of Health, Grant No. R01 EB000312-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent A. Bentolila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bentolila, L.A. (2010). Direct In Situ Hybridization with Oligonucleotide Functionalized Quantum Dot Probes. In: Bridger, J., Volpi, E. (eds) Fluorescence in situ Hybridization (FISH). Methods in Molecular Biology, vol 659. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-789-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-789-1_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-788-4

  • Online ISBN: 978-1-60761-789-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics