Skip to main content

Quantification of miRNA Abundance in Single Cells Using Locked Nucleic Acid-FISH and Enzyme-Labeled Fluorescence

  • Protocol
  • First Online:
Molecular Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 680))

Abstract

The ability to quantify miRNA abundance at the single-cell level and image its spatial distribution could lead to unique insight into the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for quantitatively imaging miRNAs in single cells using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA) with the signal amplification technology known as enzyme-labeled fluorescence (ELF). Although both approaches have previously been shown to increase detection specificity and/or sensitivity in FISH, combining these techniques into one protocol allows for single molecule detection. Specifically, individual miRNAs are identified as bright, photostable fluorescent spots. The dynamic range was found to span over three orders of magnitude and the average miRNA copy number per cell was within 17.5% of measurements acquired by quantitative RT-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  2. Kim, V. N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–85.

    Article  PubMed  CAS  Google Scholar 

  3. Griffiths-Jones, S. (2004) The microRNA Registry. Nucleic Acids Res. 32, D109–11.

    Article  PubMed  CAS  Google Scholar 

  4. Chang, T. C. and Mendell, J. T. (2007) MicroRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet. 8, 215–39.

    Article  PubMed  CAS  Google Scholar 

  5. Hume, D. A. (2000) Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96, 2323–8.

    PubMed  CAS  Google Scholar 

  6. Kepler, T. B. and Elston, T. C. (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81, 3116–36.

    Article  PubMed  CAS  Google Scholar 

  7. Ross, I. L., Browne, C. M., and Hume, D. A. (1994) Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol. Cell Biol. 72, 177–85.

    Article  PubMed  CAS  Google Scholar 

  8. Swain, P. S., Elowitz, M. B., and Siggia, E. D. (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99, 12795–800.

    Article  PubMed  CAS  Google Scholar 

  9. Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S., and Plasterk, R. H. (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27–29.

    Article  PubMed  CAS  Google Scholar 

  10. Nelson, P. T., Baldwin, D. A., Kloosterman, W. P., Kauppinen, S., Plasterk, R. H., and Mourelatos, Z. (2005) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA. 12, 187–91.

    Article  PubMed  Google Scholar 

  11. Politz, J. C., Zhang, F., and Pederson, T. (2006) MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc. Natl. Acad. Sci. USA 103, 18957–62.

    Article  PubMed  CAS  Google Scholar 

  12. Silahtaroglu, A. N., Nolting, D., Dyrskjot, L., Berezikov, E., Moller, M., Tommerup, N., and Kauppinen, S. (2007) Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat. Protoc. 2, 2520–8.

    Article  PubMed  CAS  Google Scholar 

  13. Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H. R., Kauppinen, S., and Plasterk, R. H. (2005) MicroRNA expression in zebrafish embryonic development. Science 309, 310–1.

    Article  PubMed  CAS  Google Scholar 

  14. Chou, L. S., Meadows, C., Wittwer, C. T., and Lyon, E. (2005) Unlabeled oligonucleotide probes modified with locked nucleic acids for improved mismatch discrimination in genotyping by melting analysis. Biotechniques 39, 644, 646, 648 passim.

    Article  PubMed  Google Scholar 

  15. Johnson, M. P., Haupt, L. M., and Griffiths, L. R. (2004) Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Res. 32, e55.

    Article  PubMed  Google Scholar 

  16. Valoczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., and Havelda, Z. (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32, e175.

    Article  PubMed  Google Scholar 

  17. You, Y., Moreira, B. G., Behlke, M. A., and Owczarzy, R. (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res. 34, e60.

    Article  PubMed  Google Scholar 

  18. Lu, J. and Tsourkas, A. (2009) Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Res. 37, e100.

    Article  PubMed  Google Scholar 

  19. Paragas, V. B., Zhang, Y. Z., Haugland, R. P., and Singer, V. L. (1997) The ELF-97 alkaline phosphatase substrate provides a bright, photostable, fluorescent signal amplification method for FISH. J. Histochem. Cytochem. 45, 345–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Steven Bartush from Exiqon for LNA probe design. This work was supported by the National Institutes of Health (NCI) R21-CA125088 and R21-CA116102; the National Science Foundation BES-0616031; and the American Cancer Society RSG-07-005-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Tsourkas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Lu, J., Tsourkas, A. (2011). Quantification of miRNA Abundance in Single Cells Using Locked Nucleic Acid-FISH and Enzyme-Labeled Fluorescence. In: Shah, K. (eds) Molecular Imaging. Methods in Molecular Biology, vol 680. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-901-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-901-7_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-900-0

  • Online ISBN: 978-1-60761-901-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics