Skip to main content

Environmental Modulation of Drug Taking

  • Protocol
  • First Online:
Animal Models of Drug Addiction

Part of the book series: Neuromethods ((NM,volume 53))

  • 1423 Accesses

Abstract

A variety of animal models have been developed to mimic the interactions between drugs and environment that are thought to play a crucial role in human addiction. A history of exposure to stress, for example, facilitates the development of drug addiction and drug relapse. Furthermore, there is solid evidence that drug-related contextual cues (i.e., environmental stimuli paired with drug taking that have acquired conditioned stimulus properties) can precipitate drug seeking in both humans and animals, indicating the importance of associative learning processes. Finally, there is some evidence (mostly of anecdotal nature) that the circumstances immediately surrounding drug taking can modulate drug intake in ways that are not easily reducible to conditioning or stress. In the past few years some effort has been made to investigate this latter type of drug-environment interaction using animal models. Most importantly, we have recently shown that the context can modulate the reinforcing effects of addictive drugs independently of its physical characteristics. In these studies, some animals were transferred to the test cages immediately before the treatment (Non Resident group), whereas other animals were kept at all times in the test cages (Resident group). Some studies were conducted using a single drug, whereas others employed a polydrug taking procedure. In the present chapter, we will review not only the results obtained using this animal model but also those yielded by translational studies conducted in human addicts. Finally, we will discuss the implications of these findings for the study of drug addiction in humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caprioli D, Celentano M, Paolone G, Badiani A (2007) Modeling the role of environment in addiction. Prog Neuropsychopharmacol Biol Psychiatry 31:1639–1653

    Article  PubMed  Google Scholar 

  2. Nace EP (1988) Posttraumatic stress disorder and substance abuse. Clinical issues. Recent Dev Alcohol 6:9–26

    PubMed  CAS  Google Scholar 

  3. Piazza PV, Le Moal ML (1996) Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu Rev Pharmacol Toxicol 36:359–378

    Article  PubMed  CAS  Google Scholar 

  4. Shaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J (1997) Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. J Neurosci 17:2605–2614

    PubMed  CAS  Google Scholar 

  5. Goeders NE (2003) The impact of stress on addiction. Eur Neuropsychopharmacol 13:435–441

    Article  PubMed  Google Scholar 

  6. Miczek KA, Covington HE 3rd, Nikulina EM, Hammer RP (2004) Aggression and defeat: persistent effects on cocaine self-administration and gene expression in peptidergic and aminergic mesocorticolimbic circuits. Neurosci Biobehav Rev 27:787–802

    Article  PubMed  CAS  Google Scholar 

  7. Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34

    Article  PubMed  CAS  Google Scholar 

  8. Wikler A (1973) Dynamics of drug dependence, implication of a conditioning theory for research and treatment. Arch Gen Psychiatry 28:611–616

    Article  PubMed  CAS  Google Scholar 

  9. Stewart J, de Wit H, Eikelboom R (1984) Role of conditioned and unconditioned drug effects in the self-administration of opiates and stimulants. Psychol Rev 91:251–268

    Article  PubMed  CAS  Google Scholar 

  10. O’Brien CP, Childress AR, Mclellan TA et al (1992) Classical conditioning in drug dependent humans. Ann NY Acad Sci 654:400–415

    Article  PubMed  Google Scholar 

  11. Carter BL, Tiffany ST (1999) Meta-analysis of cue-reactivity in addiction research. Addiction 94:327–340

    Article  PubMed  CAS  Google Scholar 

  12. Crombag H, Bossert JM, Koya E, Shaham Y (2008) Context-induced relapse to drug seeking: a review. Phil Trans R Soc B 363:3233–3243

    Article  PubMed  Google Scholar 

  13. Carlin AS, Bakker CB, Halpern L, Post RD (1972) Social facilitation of marijuana intoxication: impact of social set and pharmacological activity. J Abnorm Psychol 80:132–140

    Article  PubMed  CAS  Google Scholar 

  14. Lindman R (1982) Social and solitary drinking: effects on consumption and mood in male social drinkers. Physiol Behav 28:1093–1095

    Article  PubMed  CAS  Google Scholar 

  15. Sher KJ (1985) Subjective effects of alcohol: the influence of setting and individual differences in alcohol expectancies. J Stud Alcohol 46:137–146

    PubMed  CAS  Google Scholar 

  16. Dalgarno P, Shewan D (1996) Illicit use of ketamine in Scotland. J Psychoactive Drugs 28:191–199

    PubMed  CAS  Google Scholar 

  17. McElrath K, McEvoy K (2002) Negative experiences on ecstasy: the role of drug, set and setting. J Psychoactive Drugs 34:199–208

    Article  PubMed  Google Scholar 

  18. Stallwitz A, Shewan D (2004) A qualitative exploration of the impact of cultural and social factors on heroin use in Shetland (Scotland). J Psychoactive Drugs 36:367–378

    Article  PubMed  Google Scholar 

  19. Cain ME, Smith CM, Bardo MT (2004) The effect of novelty on amphetamine self-administration in rats classified as high and low responders. Psychopharmacology (Berl) 176:129–138

    Article  CAS  Google Scholar 

  20. Cornish JL, Shahnawaz Z, Thompson MR et al (2003) Heat increases 3, 4-methylenedioxymethamphetamine self-administration and social effects in rats. Eur J Pharmacol 482:339–341

    Article  PubMed  CAS  Google Scholar 

  21. Caprioli D, Paolone G, Celentano M, Testa A, Nencini P, Badiani A (2007) Environmental modulation of cocaine self-administration in the rat. Psychopharmacology (Berl) 192:397–406

    Article  CAS  Google Scholar 

  22. Caprioli D, Celentano M, Paolone G, Lucantonio F, Bari A, Nencini P, Badiani A (2008) Opposite environmental regulation of heroin and amphetamine self-administration in the rat. Psychopharmacology (Berl) 198:395–404

    Article  CAS  Google Scholar 

  23. Badiani A, Browman KE, Robinson TE (1995) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res 674:291–298

    Article  PubMed  CAS  Google Scholar 

  24. Hope BT, Simmons DE, Mitchell TB, Kreuter JD, Mattson BJ (2006) Cocaine-induced locomotor activity and Fos expression in nucleus accumbens are sensitized for 6 months after repeated cocaine administration outside the home cage. Eur J Neurosci 24:867–875

    Article  PubMed  Google Scholar 

  25. Badiani A, Anagnostaras SG, Robinson TE (1995) The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment. Psychopharmacology (Berl) 117:443–452

    Article  CAS  Google Scholar 

  26. Crombag HS, Badiani A, Robinson TE (1996) Signalled versus unsignalled intravenous amphetamine: large differences in the acute psychomotor response and sensitization. Brain Res 722:227–231

    Article  PubMed  CAS  Google Scholar 

  27. Badiani A, Oates MM, Robinson TE (2000) Modulation of morphine sensitization in the rat by contextual stimuli. Psychopharmacology (Berl) 151:273–282

    Article  CAS  Google Scholar 

  28. Paolone G, Burdino R, Badiani A (2003) Dissociation in the modulatory effects of environmental novelty on the locomotor, analgesic, and eating response to acute and repeated morphine in the rat. Psychopharmacology (Berl) 166:146–155

    CAS  Google Scholar 

  29. Paolone G, Conversi D, Caprioli D, Bianco PD, Nencini P, Cabib S, Badiani A (2007) Modulatory effect of environmental context and drug history on heroin-induced psychomotor activity and Fos protein expression in the rat brain. Neuropsychopharmacology 32:2611–2623

    Article  PubMed  CAS  Google Scholar 

  30. Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  31. Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  PubMed  Google Scholar 

  32. Nestler EJ (2005) Historical review: molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 25:210–218

    Article  Google Scholar 

  33. Kosten TR, Gawin FH, Rounsaville BJ, Kleber HD (1986) Cocaine abuse among opioid addicts: demographic and diagnostic factors in treatment. Am J Drug Alcohol Abuse 12:1–16

    Article  PubMed  CAS  Google Scholar 

  34. Leri F, Bruneau J, Stewart J (2003) Understanding polydrug use: review of heroin and cocaine co-use. Addiction 98:7–22

    Article  PubMed  Google Scholar 

  35. Westermeyer J (2004) Cross-cultural aspects of substance abuse. In: Galanter M, Kleber HD (eds) Textbook of substance abuse treatment. American Psychiatric Publishing, Washington, DC, pp 75–85

    Google Scholar 

  36. Johnson BD, Golub A (2005) Sociocultural issues. In: Lowinson JH, Ruiz P, Millman RB, Langrod JG (eds) Substance abuse: a comprehensive textbook. Lippincott Williams & Wilkins, Philadelphia, PA, pp 107–120

    Google Scholar 

  37. Jofre-Bonet M, Petry NM (2008) Trading apples for oranges?: results of an experiment on the effects of heroin and cocaine price changes on addicts’ polydrug use. J Econ Behav Organ 66:281–311

    Article  Google Scholar 

  38. Celentano M, Caprioli D, Dipasquale P, Cardillo V, Nencini P, Gaetani S, Badiani A (2009) Drug context differently regulates cocaine versus heroin self-administration and cocaine- versus heroin-induced Fos mRNA expression in the rat. Psychopharmacology 204:349–360

    Article  PubMed  CAS  Google Scholar 

  39. Nayak PK, Misra AL, Mulé SJ (1976) Physiological disposition and biotransformation of (3H) cocaine in acutely and chronically treated rats. J Pharmacol Exp Ther 196:556–569

    PubMed  CAS  Google Scholar 

  40. Zhang F, Zhou W, Tang S, Lai M, Liu H, Yang G (2004) Motivation of heroin-seeking elicited by drug-associated cues is related to total amount of heroin exposure during self-administration in rats. Pharmacol Biochem Behav 79:291–298

    Article  PubMed  CAS  Google Scholar 

  41. Strandberg JJ, Kugelberg FC, Alkass K, Gustavsson A, Zahlsen K, Spigset O, Druid H (2006) Toxicological analysis in rats subjected to heroin and morphine overdose. Toxicol Lett 166:11–18

    Article  PubMed  CAS  Google Scholar 

  42. Caprioli D, Celentano M, Dubla A, Lucantonio F, Nencini P, Badiani A (2009) Ambience and drug choice: cocaine- and heroin-taking as a function of environmental context in humans and rats. Biol Psychiatry 65:893–899

    Article  PubMed  CAS  Google Scholar 

  43. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders (DSM-IV-TR). Fourth edition. American Psychiatric Publishing, Washington, DC

    Book  Google Scholar 

  44. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesoli­mbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  45. Johanson CE, Fischman MW (1989) The pharmacology of cocaine related to its abuse. Pharmacol Rev 41:3–52

    PubMed  CAS  Google Scholar 

  46. Kuczenski R, Segal DS (1994) Neurochemistry of amphetamine. In: Cho AK, Segal DS (eds) Amphetamine and its analogs: psychopharmacology, toxicology and abuse. Academic, San Diego, CA, pp 81–113

    Google Scholar 

  47. Gysling K, Wang RY (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res 277:119–127

    Article  PubMed  CAS  Google Scholar 

  48. Matthews RT, German DC (1984) Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience 11:617–625

    Article  PubMed  CAS  Google Scholar 

  49. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    PubMed  CAS  Google Scholar 

  50. Devine DP, Leone P, Pocock D, Wise RA (1993) Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J Pharmacol Exp Ther 266:1236–1246

    PubMed  CAS  Google Scholar 

  51. Wise RA (2004) Dopamine, learning and motivation. Nature Rev Neurosci 5:483–494

    Article  CAS  Google Scholar 

  52. Badiani A, Oates MM, Day HEW, Watson SJ, Akil H, Robinson TE (1998) Amphetamine-induced behavior, dopamine release and c-fos mRNA expression: modulation by environmental novelty. J Neurosci 18:10579–10593

    PubMed  CAS  Google Scholar 

  53. Badiani A, Oates MM, Fraioli S, Browman KE, Ostrander MM, Xue CJ, Wolf ME, Robinson TE (2000) Environmental modulation of the response to amphetamine: dissociation between changes in behavior and changes in dopamine and glutamate overflow in the rat striatal complex. Psychopharmacology 151:166–174

    Article  PubMed  CAS  Google Scholar 

  54. Ettenberg A, Pettit HO, Bloom FE, Koob JF (1982) Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology 78:204–209

    Article  PubMed  CAS  Google Scholar 

  55. Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32:1433–1451

    Article  PubMed  CAS  Google Scholar 

  56. Singer G, Wallace M (1984) Effects of 6-OHDA lesions in the nucleus accumbens on the acquisition of self injection of heroin under schedule and non schedule conditions in rats. Pharmacol Biochem Behav 20:807–809

    Article  PubMed  CAS  Google Scholar 

  57. Smith JE, Guerin GF, Co C, Barr TS, Lane JD (1985) Effects of 6-OHDA lesions of the central medial nucleus accumbens on rat intravenous morphine self-administration. Pharmacol Biochem Behav 23:843–849

    Article  PubMed  CAS  Google Scholar 

  58. Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berl) 84:167–173

    Article  CAS  Google Scholar 

  59. Dworkin SI, Guerin GF, Co C et al (1988) Lack of an effect of 6-hydroxydopamine lesions of the nucleus accumbens on intravenous morphine self-administration. Pharmacol Biochem Behav 30:1051–1057

    Article  PubMed  CAS  Google Scholar 

  60. Gerrits MA, Van Ree JM (1996) Effect of nucleus accumbens dopamine depletion on motivational aspects involved in initiation of cocaine and heroin self-administration in rats. Brain Res 713:114–124

    Article  PubMed  CAS  Google Scholar 

  61. Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605

    Article  PubMed  CAS  Google Scholar 

  62. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    Article  PubMed  CAS  Google Scholar 

  63. Chang JY, Janak PH, Woodward DJ (1998) Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J Neurosci 18:3098–3115

    PubMed  CAS  Google Scholar 

  64. Stinus L, Cador M, Le Moal M (1992) Interaction between endogenous opiods and dopamine within the nucleus accumbens. Ann NY Acad Sci 654:254–273

    Article  PubMed  CAS  Google Scholar 

  65. Mello NK, Negus SS (1996) Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychophar­macology 14:375–424

    Article  PubMed  CAS  Google Scholar 

  66. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  PubMed  CAS  Google Scholar 

  67. Wang H, Gracy KN, Pickel VM (1999) Mu-opioid and NMDA-type glutamate receptors are often colocalized in spiny neurons within patches of the caudate-putamen nucleus. J Comp Neurol 412:132–146

    Article  PubMed  CAS  Google Scholar 

  68. Ferguson SM, Thomas MJ, Robinson TE (2004) Morphine-induced c-fos mRNA expression in striatofugal circuits: modulation by dose, environmental context, and drug history. Neuropsychopharmacology 29:1664–1674

    Article  PubMed  CAS  Google Scholar 

  69. Badiani A, Oates MM, Day HEW, Watson SJ, Akil H, Robinson TE (1999) Environmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behav Brain Res 103:203–209

    Article  PubMed  CAS  Google Scholar 

  70. Uslaner J, Badiani A, Norton CS, Day HE, Watson SJ, Akil H, Robinson TE (2001) Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur J Neurosci 13:1977–1983

    Article  PubMed  CAS  Google Scholar 

  71. Anthony JC, Chen YC (2004) Epidemiology of drug dependence. In: Galanter M, Kleber HD (eds) Textbook of substance abuse treatment. American Psychiatric Publishing, Washington, DC, pp 55–72

    Google Scholar 

  72. Westermeyer J (2004) Cross-cultural aspects of substance abuse. In: Galanter M, Kleber HD (eds) Textbook of substance abuse treatment. American Psychiatric Publishing, Washington, DC, pp 75–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Badiani, A., Caprioli, D., Testa, A., De Luca, M.T., Celentano, M. (2011). Environmental Modulation of Drug Taking. In: Olmstead, M. (eds) Animal Models of Drug Addiction. Neuromethods, vol 53. Humana Press. https://doi.org/10.1007/978-1-60761-934-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-934-5_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-933-8

  • Online ISBN: 978-1-60761-934-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics