Skip to main content

Embryonic Stem Cells for Osteo-Degenerative Diseases

  • Protocol
  • First Online:
Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 690))

Abstract

Current orthopedic practice to treat osteo-degenerative diseases, such as osteoporosis, calls for antiresorptive therapies and anabolic bone medications. In some cases, surgery, in which metal rods are inserted into the bones, brings symptomatic relief. As these treatments may ameliorate the symptoms, but cannot cure the underlying dysregulation of the bone, the orthopedic field seems ripe for regenerative therapies using transplantation of stem cells. Stem cells bring with them the promise of completely curing a disease state, as these are the cells that normally regenerate tissues in a healthy organism. This chapter assembles reports that have successfully used stem cells to generate osteoblasts, osteoclasts, and chondrocytes – the cells that can be found in healthy bone tissue – in culture, and review and collate studies about animal models that were employed to test the function of these in vitro “made” cells. A particular emphasis is placed on embryonic stem cells, the most versatile of all stem cells. Due to their pluripotency, embryonic stem cells represent the probably most challenging stem cells to bring into the clinic, and therefore, the associated problems are discussed to put into perspective where the field currently is and what we can expect for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Osteoporosis Foundation. http://www.nof.org/osteoporosis/diseasefacts.htm

  2. Kovacic, J.C., Muller, D.W., Harvey, R., and Graham, R.M. (2005) Update on the use of stem cells for cardiac disease. Intern. Med. J. 35(6), 348–356.

    PubMed  CAS  Google Scholar 

  3. Feron, F., Perry, C., Cochrane, J., Licina, P., Nowitzke, A., Urquhart, S., et al. (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128(Pt 12), 2951–2960.

    PubMed  CAS  Google Scholar 

  4. Freed, C.R., Greene, P.E., Breeze, R.E., Tsai, W.Y., DuMouchel, W., Kao, R., et al. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344(10), 710–719.

    PubMed  CAS  Google Scholar 

  5. Bachoud-Levi, A.C., Gaura, V., Brugieres, P., Lefaucheur, J.P., Boisse, M.F., Maison, P., et al. (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 5(4), 303–309.

    PubMed  Google Scholar 

  6. Farkas, G., and Karacsonyi, S. (1985) Clinical transplantation of fetal human pancreatic islets. Biomed. Biochim. Acta 44(1), 155–159.

    PubMed  CAS  Google Scholar 

  7. Le Blanc, K., Gotherstrom, C., Ringden, O., Hassan, M., McMahon, R., Horwitz, E., et al. (2005). Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79(11), 1607–1614.

    PubMed  Google Scholar 

  8. Tuch, B.E. (2006) Stem cells – a clinical update. Aust. Fam. Physician 35(9), 719–721.

    PubMed  Google Scholar 

  9. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676.

    PubMed  CAS  Google Scholar 

  10. Okita, K., Ichisaka, T., and Yamanaka, S. (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151), 313–317.

    PubMed  CAS  Google Scholar 

  11. Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., et al. (2009) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26(11), 1276–1284.

    Google Scholar 

  12. Ryan, M.C., and Sandell, L.J. (1990) Differential expression of a cysteine-rich domain in the NH2-terminal propeptide of type II (cartilage) procollagen. J. Biol. Chem. 265, 10334–10339.

    PubMed  CAS  Google Scholar 

  13. Eyre, D.R., Weis, M.A., and Wu, J.J. (2006) Articular cartilage collagen: an irreplaceable framework? Eur. Cell Mater. 12, 57–63.

    PubMed  CAS  Google Scholar 

  14. Eyre, D. (2004) Collagen of articular cartilage. Arthritis Res. 4(1), 30–35.

    Google Scholar 

  15. Heinegard, D., and Paulsson, M. (1984) Structure and metabolism of proteoglycans. In: Piez, K.A., Reddi, A.H. (eds). Extracellular matrix biochemistry. Elsevier, New York, p. 277.

    Google Scholar 

  16. Termine, J.D., and Robey, P.G. (1996) Bone matrix proteins and the mineralization process. In: Favus MJ (ed). Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott-Raven, Philadelphia, pp. 24–28.

    Google Scholar 

  17. Aubin, J.E., Liu, F., Malaval, L., and Gupta, A.K. (1995) Osteoblast and chondroblast differentiation. Bone 17(2 Suppl), 77S–83S.

    PubMed  CAS  Google Scholar 

  18. Davies JE (1996). In vitro modeling of the bone/implant interface. Anat. Rec. 245(2), 426–445.

    PubMed  CAS  Google Scholar 

  19. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., and Karsenty, G. (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5), 747–754.

    PubMed  CAS  Google Scholar 

  20. Harada, H., Tagashira, S., Fujiwara, M., Ogawa, S., Katsumata, T., Yamaguchi, A., et al. (1999) Cbfa1 isoforms exert functional differences in osteoblast differentiation. J. Biol. Chem. 274(11), 6972–6978.

    PubMed  CAS  Google Scholar 

  21. Kern, B., Shen, J., Starbuck, M., and Karsenty, G. (2001) Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J. Biol. Chem. 276(10), 7101–7107.

    PubMed  CAS  Google Scholar 

  22. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R., et al. (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29.

    PubMed  CAS  Google Scholar 

  23. Tanaka, S., Takahashi, N., Udagawa, N., Tamura, T., Akatsu, T., Stanley, E.R., et al. (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J. Clin. Invest. 91(1), 257–263.

    PubMed  CAS  Google Scholar 

  24. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95(7), 3597–3602.

    PubMed  CAS  Google Scholar 

  25. Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2), 165–176.

    PubMed  CAS  Google Scholar 

  26. Doetschmann, T.C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.

    Google Scholar 

  27. Olsen, B.R., Reginato, A.M., and Wang, W. (2000) Bone development. Annu. Rev. Cell. Dev. Biol. 16, 191–220.

    PubMed  CAS  Google Scholar 

  28. Karsenty, G., and Wagner, E.F. (2002) Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2(4), 389–406.

    PubMed  CAS  Google Scholar 

  29. Yang, X., and Karsenty, G. (2002) Transcription factors in bone: developmental and pathological aspects. Trends Mol. Med. 8(7), 340–345.

    PubMed  CAS  Google Scholar 

  30. Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., et al. (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93(3), 411–422.

    PubMed  CAS  Google Scholar 

  31. Ducy, P., Starbuck, M., Priemel, M., Shen, J., Pinero, G., Geoffroy, V., et al. (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 13(8), 1025–1036.

    PubMed  CAS  Google Scholar 

  32. Hjelmeland, A.B., Schilling, S.H., Guo, X., Quarles, D., and Wang, X.F. (2005) Loss of Smad3-mediated negative regulation of Runx2 activity leads to an alteration in cell fate determination. Mol. Cell. Biol. 25(21), 9460–9468.

    PubMed  CAS  Google Scholar 

  33. Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., et al. (1993) PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc. Natl. Acad. Sci. USA 90(14), 6859–6863.

    PubMed  CAS  Google Scholar 

  34. Xiao, Z.S., Thomas, R., Hinson, T.K., and Quarles, L.D. (1998) Genomic structure and isoform expression of the mouse, rat and human Cbfa1/Osf2 transcription factor. Gene 214, 187–197.

    PubMed  CAS  Google Scholar 

  35. Pozner, A., Goldenberg, D., Negreanu, V., Le, S.Y., Elroy-Stein, O., Levanon, D., et al. (2000) Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms. Mol. Cell. Biol. 20, 2297–2307.

    PubMed  CAS  Google Scholar 

  36. Drissi, H., Luc, Q., Shakoori, R., Chuva, De Sousa Lopes, S., Choi, J.Y., et al. (2000) Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. J. Cell. Physiol. 184(3), 341–350.

    PubMed  CAS  Google Scholar 

  37. Stewart, M., Terry, A., Hu, M., O’Hara, M., Blyth, K., Baxter, E., et al. (1997) Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA (CBFA1): evidence for a new myc collaborating oncogene. Proc. Natl. Acad. Sci. USA 94(16), 8646–8651.

    PubMed  CAS  Google Scholar 

  38. Thirunavukkarasu, K., Mahajan, M., McLarren, K.W., Stifani, S., and Karsenty, G. (1998) Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol. Cell. Biol. 18, 4197–4208.

    PubMed  CAS  Google Scholar 

  39. Banerjee, C., Javed, A., Choi, J.-Y., Green, J., Rosen, V., Van Wijnen, A.J., et al. (2001) Differential regulation of the two principal Runx2/Cbfa1 N-Terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 142(9), 4026–4039

    PubMed  CAS  Google Scholar 

  40. Javed, A., Guo, B., Hiebert, S., Choi, J.Y., Green, J., Zhao, S.C., et al. (2000). Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J. Cell Sci. 113(Pt 12), 2221–2231.

    PubMed  CAS  Google Scholar 

  41. Javed, A., Barnes, G.L., Jasanya, B.O., Stein, J.L., Gerstenfeld, L., Lian, J.B., et al. (2001) runt homology domain transcription factors (Runx, Cbfa, and AML) mediate repression of the bone sialoprotein promoter: evidence for promoter context-dependent activity of Cbfa proteins. Mol. Cell. Biol. 21(8), 2891–2905.

    PubMed  CAS  Google Scholar 

  42. Gao, Y.H., Shinki, T., Yuasa, T., Kataoka-Enomoto, H., Komori, T., Suda, T., et al. (1998) Potential role of cbfa1, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochem. Biophys. Res. Commun. 252(3), 697–702.

    PubMed  CAS  Google Scholar 

  43. Philipsen, S., and Suske, G.A. (1999) Tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 27, 2991–3000.

    PubMed  CAS  Google Scholar 

  44. Black, A.R., Black, J.D., and Azizkhan-Clifford, J. (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J. Cell. Physiol. 188, 143–160.

    PubMed  CAS  Google Scholar 

  45. Göllner, H., Dani, C., Phillips, B., Philipsen, S., and Suske, G. (2001) Impaired ossification in mice lacking the transcription factor Sp3. Mech. Dev. 106, 77–83.

    PubMed  Google Scholar 

  46. Milona, M.A., Gough, J.E., and Edgar, A.J. (2003) Expression of alternatively spliced isoforms of human Sp7 in osteoblast-like cells. BMC Genomics 4(1), 43.

    PubMed  Google Scholar 

  47. Nishio, Y., Dong, Y., Paris, M., O’Keefe, R.J., Schwarz, E.M., and Drissi, H. (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372, 62–70.

    PubMed  CAS  Google Scholar 

  48. Maehata, Y., Takamizawa, S., Ozawa, S., Kato, Y., Sato, S., Kubota, E., et al. (2006) Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Matrix Biol. 25(1), 47–58.

    PubMed  CAS  Google Scholar 

  49. Shen, Q., and Christakos, S. (2005) The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J. Biol. Chem. 280(49), 40589–40598.

    PubMed  CAS  Google Scholar 

  50. Xiao, Z.S., Hinson, T.K., and Quarles, L.D. (1999) Cbfa1 isoform overexpression upregulates osteocalcin gene expression in non-osteoblastic and pre-osteoblastic cells. J. Cell. Biochem. 74(4), 596–605.

    PubMed  CAS  Google Scholar 

  51. McClellan, J.W., Mulconrey, D.S., Forbes, R.J., and Fullmer, N. (2006) Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). J. Spinal Disord. Tech. 19(7), 483–486.

    PubMed  Google Scholar 

  52. Vaidya, R., Weir, R., Sethi, A., Meisterling, S., Hakeos, W., and Wybo, C.D. (2007) Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J. Bone Joint Surg. Br. 89(3), 342–345.

    PubMed  CAS  Google Scholar 

  53. Choi, K.Y., Kim, H.J., Lee, M.H., Kwon, T.G., Nah, H.D., Furuichi, T., et al. (2005) Runx2 regulates FGF2-induced Bmp2 expression during cranial bone development. Dev. Dyn. 233(1), 115–121.

    PubMed  CAS  Google Scholar 

  54. Zehentner, B.K., Dony, C., and Burtscher, H. (1999) The transcription factor Sox9 is involved in BMP-2 signaling. J. Bone Miner. Res. 14(10), 1734–1741.

    PubMed  CAS  Google Scholar 

  55. Chimal-Monroy, J., Rodriguez-Leon, J., Montero, J.A., Ganan, Y., Macias, D., Merino, R., et al. (2003) Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev. Biol. 257(2), 292–301.

    PubMed  CAS  Google Scholar 

  56. Lefebvre, V., and de Crombrugghe, B. (1998) Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 16(9), 529–540.

    PubMed  CAS  Google Scholar 

  57. Smits, P., Li, P., Mandel, J., Zhang, Z., Deng, J.M., Behringer, R.R., et al. (2001) The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1(2), 277–290.

    PubMed  CAS  Google Scholar 

  58. Akiyama, H., Chaboissier, M.C., Martin, J.F., Schedl, A., and de Crombrugghe, B. (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16(21), 2813–2828.

    PubMed  CAS  Google Scholar 

  59. Lefebvre, V., Behringer, R.R., and de Crombrugghe, B. (2001) L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis Cartilage 9(Suppl A), S69–S75.

    PubMed  Google Scholar 

  60. Bi, W., Deng, J.M., Zhang, Z., Behringer, R.R., and de Crombrugghe, B. (1999) Sox9 is required for cartilage formation. Nat. Genet. 22(1), 85–89.

    PubMed  CAS  Google Scholar 

  61. Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003) Osteoclast differentiation and activation. Nature 423(6937), 337–342.

    PubMed  CAS  Google Scholar 

  62. Lanzi, R., Losa, M., Villa, I., Gatti, E., Sirtori, M., Dal Fiume, C., et al. (2003) GH replacement therapy increases plasma osteoprotegerin levels in GH-deficient adults. Eur. J. Endocrinol. 148(2), 185–191.

    PubMed  CAS  Google Scholar 

  63. Kwon, O.H., Lee, C.K., Lee, Y.I., Paik, S.G., and Lee, H.J. (2005) The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors. Biochem. Biophys. Res. Commun. 335(2), 437–446.

    PubMed  CAS  Google Scholar 

  64. Xing, L., Bushnell, T.P., Carlson, L., Tai, Z., Tondravi, M., Siebenlist, U., et al. (2002) NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J. Bone Miner. Res. 17(7), 1200–1210.

    PubMed  CAS  Google Scholar 

  65. Kuroki, Y., Shiozawa, S., Sugimoto, T., Kanatani, M., Kaji, H., Miyachi, A., et al. (1994) Constitutive c-fos expression in osteoblastic MC3T3-E1 cells stimulates osteoclast maturation and osteoclastic bone resorption. Clin. Exp. Immunol. 95(3), 536–539.

    PubMed  CAS  Google Scholar 

  66. Grigoriadis, A.E., Wang, Z.Q., Cecchini, M.G., Hofstetter, W., Felix, R., Fleisch, H.A., et al. (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 266(5184), 443–448.

    PubMed  CAS  Google Scholar 

  67. Yamane, T., Kunisada, T., Yamazaki, H., Nakano, T., Orkin, S.H., and Hayashi, S.I. (2000) Sequential requirements for SCL/tal-1, GATA-2, macrophage colony-stimulating factor, and osteoclast differentiation factor/osteoprotegerin ligand in osteoclast development. Exp. Hematol. 28(7), 833–840.

    PubMed  CAS  Google Scholar 

  68. Lindunger, A., MacKay, C.A., Ek-Rylander, B., Andersson, G., and Marks, S.C. Jr. (1990) Histochemistry and biochemistry of tartrate-resistant acid phosphatase (TRAP) and tartrate-resistant acid adenosine triphosphatase (TrATPase) in bone, bone marrow and spleen: implications for osteoclast ontogeny. Bone Miner. 10(2), 109–119.

    PubMed  CAS  Google Scholar 

  69. Bossard, M.J., Tomaszek, T.A., Thompson, S.K., Amegadzie, B.Y., Hanning, C.R., Jones, C., et al. (1996) Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J. Biol. Chem. 271(21), 12517–12524.

    PubMed  CAS  Google Scholar 

  70. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., et al. (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6(2), 88–95.

    PubMed  CAS  Google Scholar 

  71. Gerecht-Nir, S., Cohen, S., and Itskovitz-Eldor, J. (2004) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng. 86(5), 493–502.

    PubMed  CAS  Google Scholar 

  72. zur Nieden, N.I., Kempka, G., and Ahr, H.J. (2003). In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71(1), 18–27.

    PubMed  CAS  Google Scholar 

  73. zur Nieden, N.I., Kempka, G., Rancourt, D.E., and Ahr, H.J. (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev. Biol. 5(1), 1.

    PubMed  Google Scholar 

  74. zur Nieden, N.I., Cormier, J.T., Rancourt, D.E., and Kallos, M.S. (2007) Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J. Biotechnol. 129(3), 421–432.

    PubMed  CAS  Google Scholar 

  75. Yamane, T., Kunisada, T., Yamazaki, H., Era, T., Nakano, T., and Hayashi, S.I. (1997) Development of osteoclasts from embryonic stem cells through a pathway that is c-fms but not c-kit dependent. Blood 90(9), 3516–35123.

    PubMed  CAS  Google Scholar 

  76. Evans, M.J., and Kaufman, M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819), 154–156.

    PubMed  CAS  Google Scholar 

  77. Martin, G.R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78(12), 7634–7638.

    PubMed  CAS  Google Scholar 

  78. Doetschman, T., Williams, P., and Maeda, N. (1998) Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev. Biol. 127(1), 224–227.

    Google Scholar 

  79. Iannaccone, P.M., Taborn, G.U., Garton, R.L., Caplice, M.D., and Brenin, D.R. (1994) Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev. Biol. 163(1), 288–292.

    PubMed  CAS  Google Scholar 

  80. Giles, J.R., Yang, X., Mark, W., and Foote, R.H. (1993) Pluripotency of cultured rabbit inner cell mass cells detected by isozyme analysis and eye pigmentation of fetuses following injection into blastocysts or morulae. Mol. Reprod. Dev. 36(2), 130–138.

    PubMed  CAS  Google Scholar 

  81. Graves, K.H., and Moreadith, R.W. (1993) Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol. Reprod. Dev. 36( 4),424–433.

    PubMed  CAS  Google Scholar 

  82. Sims, M., and First, N.L. (1994) Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc. Natl. Acad. Sci. USA 91(13), 6143–6147.

    PubMed  CAS  Google Scholar 

  83. Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., Becker, R.A., et al. (1995) Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92(17), 7844–7848.

    PubMed  CAS  Google Scholar 

  84. Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., and Hearn, J.P. (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55(2), 254–259.

    PubMed  CAS  Google Scholar 

  85. Sasaki, E., Hanazawa, K., Kurita, R., Akatsuka, A., Yoshizaki, T., Ishii, H., et al. (2005) Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus). Stem Cells 23(9), 1304–1313.

    PubMed  CAS  Google Scholar 

  86. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145–1147.

    PubMed  CAS  Google Scholar 

  87. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18(4), 399–404.

    PubMed  CAS  Google Scholar 

  88. Amit, M., and Itskovitz-Eldor, J. (2002) Derivation and spontaneous differentiation of human embryonic stem cells. J. Anat. 200(Pt 3), 225–232.

    PubMed  Google Scholar 

  89. Maltsev, V.A., Rohwedel, J., Hescheler, J., and Wobus, A.M. (1993). Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44(1), 41–50.

    PubMed  CAS  Google Scholar 

  90. Klug, M.G., Soonpaa, M.H., Koh, G.Y., and Field, L.J. (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98(1), 216–224.

    PubMed  CAS  Google Scholar 

  91. Soria, B., Roche, E., Berná, G., León-Quinto, T., Reig, J.A., and Martín, F. (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2), 157–162.

    PubMed  CAS  Google Scholar 

  92. Hamazaki, T., Iiboshi, Y., Oka, M., Papst, P.J., Meacham, A.M., Zon, L.I., et al. (2001) Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 497(1), 15–19.

    PubMed  CAS  Google Scholar 

  93. Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M., and McKay, R.D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59(1), 89–102.

    PubMed  CAS  Google Scholar 

  94. Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M.V. (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13(1), 473–486.

    PubMed  CAS  Google Scholar 

  95. Kramer, J., Hegert, C., Guan, K., Wobus, A.M., Müller, P.K., and Rohwedel, J. (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech. Dev. 92(2), 193–205.

    PubMed  CAS  Google Scholar 

  96. Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K. L., and Tzukerman, M. (2001) Insulin production by human embryonic stem cells. Diabetes 50(8), 1691–1697.

    PubMed  CAS  Google Scholar 

  97. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., et al. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108(3), 407–414.

    PubMed  CAS  Google Scholar 

  98. Kaufman, D.S., Hanson, E.T., Lewis, R.L., Auerbach, R., and Thomson, J.A. (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 98(19), 10716–10721.

    PubMed  CAS  Google Scholar 

  99. Smith, A.G. (2001) Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462.

    PubMed  CAS  Google Scholar 

  100. Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M., et al. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336(6200), 688–690.

    PubMed  CAS  Google Scholar 

  101. Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Gearing, D.P., et al. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336(6200), 684–687.

    PubMed  CAS  Google Scholar 

  102. Nichols, J., Evans, E.P., and Smith, A.G. (1990) Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110(4), 1341–1348.

    PubMed  CAS  Google Scholar 

  103. Metcalf, D. (1990) The induction and inhibition of differentiation in normal and leukaemic cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 327(1239), 99–109.

    PubMed  CAS  Google Scholar 

  104. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., et al. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3), 379–391.

    PubMed  CAS  Google Scholar 

  105. Palmieri, S.L., Peter, W., Hess, H., and Schöler, H.R. (1994) Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev. Biol. 166(1), 259–267.

    PubMed  CAS  Google Scholar 

  106. Rosner M.H., Vigano M.A., Ozato K., Timmons P.M., Poirier F., Rigby P.W., et al. (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345(6277), 686–692.

    PubMed  CAS  Google Scholar 

  107. Schöler, H.R., Dressler, G.R., Balling, R., Rohdewohld, H., and Gruss, P. (1990) Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J. 9(7), 2185–2195.

    PubMed  Google Scholar 

  108. Schöler, H.R., Ruppert, S., Suzuki, N., Chowdhury, K., and Gruss, P. (1990) New type of POU domain in germ line-specific protein Oct-4. Nature 344(6265), 435–439.

    PubMed  Google Scholar 

  109. Niwa, H., Miyazaki, J., and Smith, A.G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24(4), 372–376.

    PubMed  CAS  Google Scholar 

  110. Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17(1), 126–140.

    PubMed  CAS  Google Scholar 

  111. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5), 631–642.

    PubMed  CAS  Google Scholar 

  112. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., et al. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5), 643–655.

    PubMed  CAS  Google Scholar 

  113. Tomioka, M., Nishimoto, M., Miyagi, S., Katayanagi, T., Fukui, N., Niwa, H., et al. (2002). Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res. 30(14), 3202–3213.

    PubMed  CAS  Google Scholar 

  114. Chew, J.-L., Loh, Y.-H., Zhang, W., Chen, X., Tam, W.-L., Yeap, L.-S., et al. (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell. Biol. 25(14), 6031–6046.

    PubMed  CAS  Google Scholar 

  115. Okumura-Nakanishi, S., Saito, M., Niwa, H., and Ishikawa, F. (2005) Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J. Biol. Chem. 280(7), 5307–5317.

    PubMed  CAS  Google Scholar 

  116. Kuroda, T., Tada, M., Kubota, H., Kimura, H., Hatano, S.Y., Suemori, H., et al. (2005). Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell. Biol. 25(6), 2475–2485

    PubMed  CAS  Google Scholar 

  117. Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H., et al. (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem. 280(26), 24731–24737.

    PubMed  CAS  Google Scholar 

  118. Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., et al. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 122(6), 947–956.

    PubMed  CAS  Google Scholar 

  119. Bernstein, B.E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D.K., Huebert, D.J., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120(2), 169–181.

    PubMed  CAS  Google Scholar 

  120. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jørgensen, H.F., John, R.M., et al. (2006) Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8(5), 532–538.

    PubMed  CAS  Google Scholar 

  121. Kirmizis, A., Bartley, S.M., Kuzmichev, A., Margueron, R., Reinberg, D., Green, R., et al. (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 18(13), 1592–1605.

    PubMed  CAS  Google Scholar 

  122. Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee T.I., et al. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091), 349–353.

    PubMed  CAS  Google Scholar 

  123. Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S., et al. (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431(7010), 873–878.

    PubMed  CAS  Google Scholar 

  124. Schwartz, Y.B., and Pirrotta, V. (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8(1), 9–22.

    PubMed  CAS  Google Scholar 

  125. Wittrant, Y., Theoleyre, S., Couillaud, S., Dunstan, C., Heymann, D., and Rédini, F. (2004) Relevance of an in vitro osteoclastogenesis system to study receptor activator of NF-kB ligand and osteoprotegerin biological activities. Exp. Cell Res. 293(2), 292–301.

    PubMed  CAS  Google Scholar 

  126. Tsuneto, M., Yamazaki, H., Yoshino, M., Yamada, T., and Hayashi, S. (2005) Ascorbic acid promotes osteoclastogenesis from embryonic stem cells. Biochem. Biophys. Res. Commun. 335(4), 1239–1246.

    PubMed  CAS  Google Scholar 

  127. Okuyama, H., Tsuneto, M., Yamane, T., Yamazaki, H., and Hayashi, S. (2003) Discrete types of osteoclast precursors can be generated from embryonic stem cells. Stem Cells 21(6), 670–680.

    PubMed  CAS  Google Scholar 

  128. Hemmi, H., Okuyama, H., Yamane, T., Nishikawa, S., Nakano, T., Yamazaki, H., et al. (2001) Temporal and spatial localization of osteoclasts in colonies from embryonic stem cells. Biochem. Biophys. Res. Commun. 280(2), 526–534.

    PubMed  CAS  Google Scholar 

  129. Hayashi, S., Yamane, T., Miyamoto, A., Hemmi, H., Tagaya, H., Tanio, Y., et al. (1998) Commitment and differentiation of stem cells to the osteoclast lineage. Biochem. Cell Biol. 76(6), 911–922.

    PubMed  CAS  Google Scholar 

  130. Porcher, C., Swat, W., Rockwell, K., Fujiwara, Y., Alt, F.W., and Orkin, S.H. (1996) The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86(1), 47–57.

    PubMed  CAS  Google Scholar 

  131. Elefanty, A.G., Robb, L., Birner, R., and Begley, C.G. (1997) Hematopoietic-specific genes are not induced during in vitro differentiation of scl-null embryonic stem cells. Blood 90(4), 1435–1447.

    PubMed  CAS  Google Scholar 

  132. Tsuneto, M., Tominaga, A., Yamazaki, H., Yoshino, M., Orkin, S.H., and Hayashi, S. (2005). Enforced expression of PU.1 rescues osteoclastogenesis from embryonic stem cells lacking Tal-1. Stem Cells 23(1), 134–143.

    PubMed  CAS  Google Scholar 

  133. Cao, T., Heng, B.C., Ye, C.P., Liu, H., Toh, W.S., Robson, P., et al. (2005) Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of distinct nodule-structure. Tissue Cell. 37(4), 325–34.

    PubMed  CAS  Google Scholar 

  134. Yao, S., Chen, S., Clark, J., Hao, E., Beattie, G.M., Hayek, A., et al. (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl. Acad. Sci. USA 103(18), 6907–6912.

    PubMed  CAS  Google Scholar 

  135. Beddington, R.S., Rashbass, P., Wilson, V. (1992) Brachyury – a gene affecting mouse gastrulation and early organogenesis. Dev. Suppl. 157–165.

    Google Scholar 

  136. Gadue, P., Huber, T.L., Paddison, P.J., Keller, G.M. (2006) Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl. Acad. Sci. USA 103(45), 16806–16811.

    PubMed  CAS  Google Scholar 

  137. Nakanishi, M., Kurisaki, A., Hayashi, Y., Warashina, M., Ishiura, S., Kusuda-Furue, M., et al. (2009) Directed induction of anterior and posterior primitive streak by Wnt from embryonic stem cells cultured in a chemically defined serum-free medium. FASEB J. 23(1), 114–122.

    PubMed  CAS  Google Scholar 

  138. Phillips, B.W., Belmonte, N., Vernochet, C., Ailhaud, G., and Dani, C. (2001) Compactin enhances osteogenesis in murine embryonic stem cells. Biochem. Biophys. Res. Commun. 284(2), 478–484.

    PubMed  CAS  Google Scholar 

  139. Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP, et al. (2001) Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 7(1), 89–99.

    PubMed  CAS  Google Scholar 

  140. Ahn, S.E., Kim, S., Park, K.H., Moon, S.H., Lee, H.J., Kim, G.J., et al. (2006) Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem. Biophys. Res. Commun. 340, 403–408.

    PubMed  CAS  Google Scholar 

  141. Hwang, Y.S., Randle, W.L., Bielby, R.C., Polak, J.M., and Mantalaris, A. (2006) Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with hepG2-conditioned medium and modulation of the embryoid body formation period: application to skeletal tissue engineering. Tissue Eng. 12, 1381–1392.

    PubMed  CAS  Google Scholar 

  142. Davis, L.A., and zur Nieden, N.I. (2008) Mesodermal fate decisions of a stem cell: the Wnt switch. Cell. Mol. Life Sci. 65(17), 2658–2674.

    PubMed  CAS  Google Scholar 

  143. Sottile, V., Thomson, A., and McWhir, J. (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells 5, 149–155.

    PubMed  CAS  Google Scholar 

  144. Bielby, R.C., Boccaccini, A.R., Polak, J.M., and Buttery, L.D. (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng. 10(9–10), 1518–1525.

    PubMed  CAS  Google Scholar 

  145. Yamashita, A., Takada, T., Narita, J., Yamamoto, G., and Torii, R. (2005) Osteoblastic differentiation of monkey embryonic stem cells in vitro. Cloning Stem Cells 7, 232–237.

    PubMed  CAS  Google Scholar 

  146. zur Nieden, N.I., Price, F.D., Davis, L.A., Everitt, R.E., Rancourt, D.E. (2007) Gene profiling on mixed embryonic stem cell populations reveals a biphasic role for beta-catenin in osteogenic differentiation. Mol. Endocrinol. 21(3), 674–685.

    PubMed  CAS  Google Scholar 

  147. Krishnan, V., Bryant, H.U., and Macdougald, O.A. (2006) Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116(5), 1202–1209.

    PubMed  CAS  Google Scholar 

  148. Gong, Y., Slee, R.B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A.M., et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4), 513–523.

    PubMed  CAS  Google Scholar 

  149. Bain, G., Muller, T., Wang, X., and Papkoff, J. (2003) Activated beta-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem. Biophys. Res. Commun. 301(1), 84–91.

    PubMed  CAS  Google Scholar 

  150. Tolwinski, N.S., and Wieschaus, E. (2004) A nuclear escort for beta-catenin. Nat. Cell Biol. 6(7), 579–580.

    PubMed  CAS  Google Scholar 

  151. van de Wetering, M., Cavallo, R., Dooijes, D., van Beest, M., van Es, J., Loureiro, J., et al. (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88(6), 789–799.

    PubMed  Google Scholar 

  152. Behrens, J., von Kries, J.P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., et al. (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382(6592), 638–642.

    PubMed  CAS  Google Scholar 

  153. Topol, L., Jiang, X., Choi, H., Garrett-Beal, L., Carolan, P.J., and Yang, Y. (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J. Cell. Biol. 162(5), 899–908.

    PubMed  CAS  Google Scholar 

  154. Gaur, T., Lengner, C.J., Hovhannisyan, H., Bhat, R.A., Bodine, P.V., Komm, B.S., et al. (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280(39), 33132–33140.

    PubMed  CAS  Google Scholar 

  155. Schinke, T., and Karsenty, G. (1999) Characterization of Osf1, an osteoblast-specific transcription factor binding to a critical cis-acting element in the mouse Osteocalcin promoters. J. Biol. Chem. 274(42), 30182–30189.

    PubMed  CAS  Google Scholar 

  156. Kolpakova, E., and Olsen, B.R. (2005) Wnt/beta-catenin – a canonical tale of cell-fate choice in the vertebrate skeleton. Dev. Cell. 8(5), 626–627.

    PubMed  CAS  Google Scholar 

  157. Day, T.F., Guo, X., Garrett-Beal, L., and Yang, Y. (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell. 8(5), 739–750.

    PubMed  CAS  Google Scholar 

  158. Vats, A., Bielby, R.C., Tolley, N., Dickinson, S.C., Boccaccini, A.R., Hollander, A.P., et al. (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng. 12(6), 1687–1697.

    PubMed  CAS  Google Scholar 

  159. Sui, Y., Clarke, T., and Khillan, J.S. (2003) Limb bud progenitor cells induce differentiation of pluripotent embryonic stem cells into chondrogenic lineage. Differentiation 71, 578–585.

    PubMed  CAS  Google Scholar 

  160. Cserjesi, P., Brown, D., Ligon, K.L., Lyons, G.E., Copeland, N.G., Gilbert, D.J., et al. (1995) Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 121(4), 1099–1110.

    PubMed  CAS  Google Scholar 

  161. Toh, W.S., Yang, Z., Liu, H., Heng, B.C., Lee, E.H., and Cao, T. (2007) Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25(4), 950–960.

    PubMed  CAS  Google Scholar 

  162. Hegert, C., Kramer, J., Hargus, G., Muller, J., Guan, K., Wobus, A.M., et al. (2002) Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J. Cell Sci. 115(Pt 23), 4617–4628.

    PubMed  CAS  Google Scholar 

  163. Ikeda, T., Kamekura, S., Mabuchi, A., Kou, I., Seki, S., Takato, T., et al. (2004) The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum. 50(11), 3561–3573.

    PubMed  CAS  Google Scholar 

  164. Kim, I.S., Otto, F., Zabel, B., and Mundlos, S. (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech. Dev. 80, 159–170.

    PubMed  CAS  Google Scholar 

  165. Wright, E., Hargrave, M.R., Christiansen, J., Cooper, L., Kun, J., Evans, T., et al. (1995) The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat. Genet. 9, 15–20.

    PubMed  CAS  Google Scholar 

  166. Barberi, T., Willis, L.M., Socci, N.D., and Studer, L. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2(6), e161.

    PubMed  Google Scholar 

  167. Trivedi, P., and Hematti, P. (2007) Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells. Exp. Hematol. 35(1), 146–154.

    PubMed  CAS  Google Scholar 

  168. Trivedi, P., and Hematti, P. (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp. Hematol. 36(3), 350–359.

    PubMed  CAS  Google Scholar 

  169. Arpornmaeklong, P., Brown, S.E., Wang, Z., Krebsbach, P.H. (2009) Phenotypic characterization, osteoblastic differentiation, and bone regeneration capacity of human embryonic stem cell-derived mesenchymal stem cells. Stem Cells Dev. 18(7), 955–968.

    PubMed  CAS  Google Scholar 

  170. Olivier, E.N., Rybicki, A.C., and Bouhassira, E.E. (2006) Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells 24(8), 1914–1922.

    PubMed  CAS  Google Scholar 

  171. Hwang, N.S., Varghese, S., Lee, H.J., Zhang, Z., Ye, Z., Bae, J., et al. (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc. Natl. Acad. Sci. USA 105(52), 20641–20646.

    PubMed  CAS  Google Scholar 

  172. Lian, Q., Lye, E., Suan Yeo, K., Khia Way Tan, E., Salto-Tellez, M., Liu, T.M., et al. (2007) Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells 25(2), 425–436.

    PubMed  CAS  Google Scholar 

  173. Brederlau, A., Correia, A.S., Anisimov, S.V., Elmi, M., Paul, G., Roybon, L., et al. (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24(6), 1433–1440.

    PubMed  CAS  Google Scholar 

  174. Taiani, J., Krawetz, R.J., zur Nieden, N.I., Wu, E.Y., Kallos, M.S., Matyas, J.R., Rancourt, D.E. (2010) Reduced differentiation efficiency of murine embryonic stem cells in stirred suspension bioreactors. Stem Cells Dev. 19(7), 989–998.

    PubMed  CAS  Google Scholar 

  175. Wakitani, S., Takaoka, K., Hattori, T., Miyazawa, N., Iwanaga, T., Takeda, S., et al. (2003) Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology 42(1), 162–165.

    PubMed  CAS  Google Scholar 

  176. Wakitani, S., Aoki, H., Harada, Y., Sonobe, M., Morita, Y., Mu, Y., et al. (2004) Embryonic stem cells form articular cartilage, not teratomas, in osteochondral defects of rat joints. Cell. Transplant. 13(4), 331–336.

    PubMed  Google Scholar 

  177. Nakajima, M., Wakitani, S., Harada, Y., Tanigami, A., and Tomita, N. (2007) In vivo mechanical condition plays an important role for appearance of cartilage tissue in ES cell transplanted joint. J. Orthop. Res. 26(1), 10–17.

    Google Scholar 

  178. Nussbaum, J., Minami, E., Laflamme, M.A., Virag, J.A., Ware, C.B., Masino, A., et al. (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 21(7), 1345–1357.

    PubMed  CAS  Google Scholar 

  179. Swijnenburg, R.J., Tanaka, M., Vogel, H., Baker, J., Kofidis, T., Gunawan, F., et al. (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112(9 Suppl), I166–I172.

    PubMed  Google Scholar 

  180. Lee, S.J., Lim, G.J., Lee, J.-W., Atala, A., and Yoo, J.J. (2006) In vitro evaluation of a poly(lactide-co-glycolide)–collagen composite scaffold for bone regeneration. Biomaterials 27(18), 3466–3472.

    PubMed  CAS  Google Scholar 

  181. Kim, S., Kim, S.S., Lee, S.H., Eun Ahn, S., Gwak, S.J., Song, J.H., et al. (2008) In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly(d,l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds. Biomaterials 29(8), 1043–1053.

    PubMed  CAS  Google Scholar 

  182. Hwang, N.S., Varghese, S., and Elisseeff, J. (2008) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS One 3(6), e2498.

    PubMed  Google Scholar 

  183. Webster, W.S., Johnston, M.C., Lammer, E.J., and Sulik, K.K. (1986) Isotretinoin embryopathy and the cranial neural crest: an in vivo and in vitro study. J. Craniofac. Genet. Dev. Biol. 6(3), 211–222.

    PubMed  CAS  Google Scholar 

  184. Zhou, Y., and Snead, M.L. (2008) Derivation of cranial neural crest-like cells from human embryonic stem cells. Biochem. Biophys. Res. Commun. 376(3), 542–547.

    PubMed  CAS  Google Scholar 

  185. Borello, U., Buffa, V., Sonnino, C., Melchionna, R., Vivarelli, E., and Cossu, G. (1999) Differential expression of the Wnt putative receptors Frizzled during mouse somitogenesis. Mech. Dev. 89(1–2), 173–177.

    PubMed  CAS  Google Scholar 

  186. Kimura, Y., Matsunami, H., Takeichi, M. (1996) Expression of cadherin-11 delineates boundaries, neuromeres, and nuclei in the developing mouse brain. Dev. Dyn. 206(4), 455–462.

    PubMed  CAS  Google Scholar 

  187. Hoffmann, I., and Balling, R. (1995) Cloning and expression analysis of a novel mesodermally expressed cadherin. Dev. Biol. 169(1), 337–346.

    PubMed  CAS  Google Scholar 

  188. Lee, G., Kim, H., Elkabetz, Y., Al Shamy, G., Panagiotakos, G., Barberi, T., et al. (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol. 25(12), 1468–1475.

    PubMed  CAS  Google Scholar 

  189. Kimura, Y., Matsunami, H., Inoue, T., Shimamura, K., Uchida, N., Ueno, T., et al. (1995) Cadherin-11 expressed in association with mesenchymal morphogenesis in the head, somite, and limb bud of early mouse embryos. Dev. Biol. 169(1), 347–358.

    PubMed  CAS  Google Scholar 

  190. Jukes, J.M., Both, S.K., Leusink, A., Sterk, L.M., van Blitterswijk, C.A., and de Boer, J. (2008) Endochondral bone tissue engineering using embryonic stem cells. Proc. Natl. Acad. Sci. USA 105(19), 6840–6845.

    PubMed  CAS  Google Scholar 

  191. Billon, N., Iannarelli, P., Monteiro, M.C., Glavieux-Pardanaud, C., Richardson, W.D., Kessaris, N., et al. (2007) The generation of adipocytes by the neural crest. Development 134(12), 2283–2292.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole I. zur Nieden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nieden, N.I.z. (2011). Embryonic Stem Cells for Osteo-Degenerative Diseases. In: Nieden, N. (eds) Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. Methods in Molecular Biology, vol 690. Humana Press. https://doi.org/10.1007/978-1-60761-962-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-962-8_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-961-1

  • Online ISBN: 978-1-60761-962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics