Skip to main content

Prostate Cancer

  • Protocol
  • First Online:
Positron Emission Tomography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 727))

Abstract

Prostate cancer is biologically and clinically a heterogeneous disease and its imaging evaluation will need to be tailored to the specific phases of the disease in a patient-specific, risk-adapted manner. We first present a brief overview of the natural history of prostate cancer before discussing the role of various imaging tools, including opportunities and challenges, for different clinical phases of this common disease in men. We then review the preclinical and clinical evidence on the potential and emerging role of positron emission tomography with various radiotracers in the imaging evaluation of men with prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SEER: The Surveillance, Epidemiology, and End Results Program (http://seer.cancer.gov) – based within the Surveillance Research Program (SRP) at the National Cancer Institute (NCI).

  2. Frank, I.N., Graham, S., Jr., Nabors, W.L. (1991) Urologic and Male Genital Cancers. In: Holleb AI, Fink DJ, Murphy GP, editors. Clinical Oncology. Atlanta: American Cancer Society; pp. 280–283.

    Google Scholar 

  3. Kessler, B., Albertsen, P. (2003) The natural history of prostate cancer Urol Clin North Am 30, 219–26.

    PubMed  Google Scholar 

  4. Lin, D.W., Noteboom, J.L., Blumenstein, B.A., et al. (1998) Serum percent free prostate-specific antigen in metastatic prostate cancer Urology 52, 366–71.

    PubMed  CAS  Google Scholar 

  5. Ploch, N.R., Brawer, M.K. (1994) How to use prostate-specific antigen Urology 43(2), 27–35.

    PubMed  CAS  Google Scholar 

  6. Fowler, J.E., Jr., Pandey, P., Seaver, L.E., et al. (1995) Prostate specific antigen regression and progression after androgen deprivation for localized and metastatic prostate cancer J Urol 153, 1860–5.

    PubMed  Google Scholar 

  7. Small, E.J. (1998) Prostate cancer: incidence, management and outcomes. Drugs Aging 13, 71–81.

    PubMed  CAS  Google Scholar 

  8. Lukes, M., Urban, M., Zalesky, M., et al. (2001) Prostate-specific antigen: current status Folio Biol(Praha) 47, 41–9.

    CAS  Google Scholar 

  9. Boccon-Gibod, L. (1995) Prostate-specific antigen or PSA. Facts and probabilities Presse Med 24, 1471–2.

    PubMed  CAS  Google Scholar 

  10. Dong, J.T., Rinker-Schaeffer, C.W., Ichikawa, T., et al. (1996) Prostate cancer – biology of metastasis and its clinical implications. World J Urol 14, 182–9.

    PubMed  CAS  Google Scholar 

  11. Yu, K.K., Hawkins, R.A. (2000) The prostate: diagnostic evaluation of metastatic disease. Radiol Clin North Am 38, 139–57.

    PubMed  CAS  Google Scholar 

  12. Carroll, P. (2001) Rising PSA after a radical treatment Eur Urol 40(2), 9–16.

    PubMed  CAS  Google Scholar 

  13. McMurtry, C.T., McMurtry, J.M. (2003) Metastatic prostate cancer: complications and treatment J Am Geriatr Soc 51, 1136–42.

    PubMed  Google Scholar 

  14. Timme, T.L., Satoh, T., Tahir, S.A., et al. (2003) Therapeutic targets for metastatic prostate cancer Curr Drug Targets 4(3), 251–61.

    PubMed  CAS  Google Scholar 

  15. De la Taille, A., Vancherot, F., Salomon, L., et al. (2001) Hormone-refractory prostate cancer: a multi-step and multi-event process Prostate Cancer Prostatic Dis 4, 204–12.

    Google Scholar 

  16. Carlin, B.I., Andriole, G.L. (2000) The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer 88(12), 2989–94.

    PubMed  CAS  Google Scholar 

  17. Herold, D.M., Hanlon, A.L., Movsas, B., et al. (1998) Age-related prostate cancer metastases Urology 51, 985–90.

    PubMed  CAS  Google Scholar 

  18. Sandhu, D.P., Munson, K.W., Benghiat, A., et al. (1992) Natural history and prognosis of prostate carcinoma in adolescents and men under 35 years of age. Br J Urol 69, 525–9.

    PubMed  CAS  Google Scholar 

  19. Fowler, J.E., Bigler, S.A., Renfroe, D.L., et al. (1997) Prostate specific antigen in black and white men after hormonal therapies for prostate cancer J Urol 158, 150–4.

    PubMed  CAS  Google Scholar 

  20. Pound, C.R., Partin, A.W., Eisenberger, M.A., et al. (1999) Natural history of progression after PSA elevation following radical prostatectomy JAMA 281, 1591–7.

    PubMed  CAS  Google Scholar 

  21. Fossa, S.D., Dearnaley, D.P., Law, M., et al. (1992) Prognostic factors in hormone-resistant progressing cancer of the prostate Ann Oncol 3, 331–5.

    Google Scholar 

  22. Trapman, J., Brinkmann, A.O. (1996) The androgen receptor in prostate cancer Pathol Res Pract 192, 752–60.

    PubMed  CAS  Google Scholar 

  23. Culig, Z., Hobisch, A., Hittmair, A., et al. (1997) Androgen receptor gene mutations in prostate cancer. Implications for disease progression and therapy Drugs Aging 10, 50–8.

    PubMed  CAS  Google Scholar 

  24. Culig, Z., Klocker, H., Bartsch, G., et al. (2002) Androgen receptors in prostate cancer Endocr Relat Cancer 9, 155–70.

    PubMed  CAS  Google Scholar 

  25. Jenster, G. (1999) The role of the androgen receptor in the development and progression of prostate cancer Semin Oncol 26, 407–21.

    PubMed  CAS  Google Scholar 

  26. Smaletz, O., Scher, H.I. (2002) Outcome predictions for patients with metastatic prostate cancer Semin Urol Oncol 20, 155–63.

    PubMed  Google Scholar 

  27. Partin, A.W., Steinberg, G.D., Pitcock, R.V., et al. (1992) Use of nuclear morphometry, Gleason histologic scoring, clinical stage, and age to predict disease-free survival among patients with prostate cancer Cancer 70(1), 161–8.

    PubMed  CAS  Google Scholar 

  28. Smaletz, O., Scher, H.J., Small, E.J., et al. (2002) Nomogram for overall survival of patients with progressive metastatic prostate cancer after castration J Clin Oncol 20, 3972–82.

    PubMed  Google Scholar 

  29. Cho, D., Di Blasio, C.J., Rhee, A.C., et al. (2003) Prognostic factors for survival in patients with hormone-refractory prostate cancer (HRPC) after initial androgen deprivation therapy (ADT). Urol Oncol 21, 282–91.

    PubMed  CAS  Google Scholar 

  30. Miller, J.I., Ahmann, F.R., Drach, G.W., et al. (1992) The clinical usefulness of serum prostate specific antigen after hormonal therapy of metastatic prostate cancer J Urol 147, 956–61.

    PubMed  CAS  Google Scholar 

  31. Kelly, W.K., Scher, H.I., Mazumdar, M., et al. (1993) Prostate-specific antigen as a measure of disease outcome in metastatic hormone refractory prostate cancer J Clin Oncol 11, 596–7.

    Google Scholar 

  32. Matzkin, H., Perito, P.E., Soloway, M.S. (1993) Prognostic factors in metastatic prostate cancer Cancer 72(12), 3788–92.

    PubMed  CAS  Google Scholar 

  33. Spencer, J.A., Chug, W.J., Hudson, E., et al. (1998) Prostate specific antigen level and Gleason score in predicting the stage of newly diagnosed prostate cancer Br J Radiol 71, 1130–5.

    PubMed  CAS  Google Scholar 

  34. Furuya, Y., Akakura, K., Tobe, T., et al. (2001) Prognostic significance of changes in prostate-specific antigen in patients with metastatic prostate cancer after endocrine treatment Int Urol Nephrol 32, 659–63.

    PubMed  CAS  Google Scholar 

  35. Roberts, S.G., Blute, M.L., Bergstralh, E.J., et al. (2001) PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer Mayo Clin Proc 76, 576–81.

    PubMed  CAS  Google Scholar 

  36. Oosterlinck, W., Mattelaer, J., Casselman, J., et al. (1997) PSA evolution: a prognostic factor in treatment of advanced prostatic carcinoma with total androgen blockade. Data from a Belgian multicentric study of 546 patients Acta Urol Belg 65, 63–71.

    PubMed  CAS  Google Scholar 

  37. Benaim, E.A., Pace, C.M., Lam, P.M., et al. (2002) Nadir prostate-specific antigen as a predictor of progression to androgen-independent prostate cancer Urology 59, 73–8.

    PubMed  Google Scholar 

  38. Small, E.J., McMillan, A., Meyer, M., et al. (2001) Serum prostate-specific antigen decline as a marker of clinical outcome in hormone-refractory prostate cancer patients: association with progression-free survival, pain end points, and survival J Clin Oncol 19, 1304–11.

    PubMed  CAS  Google Scholar 

  39. Crawford, E.D., DeAntoni, E.P., Ross, C.A. (1996) The role of prostate-specific antigen in the chemoprevention of prostate cancer J Cell Biochem 25, 149–55.

    CAS  Google Scholar 

  40. Safa, A.A., Reese, D.M., Carter, D.M., et al. (1998) Undetectable serum prostate-specific antigen associated with metastatic prostate cancer: a case report and review of the literature Am J Clin Oncol 21, 323–6.

    PubMed  CAS  Google Scholar 

  41. Sella, A., Konichezky, M., Flex, D., et al. (2000) Low PSA metastatic androgen-independent prostate cancer Eur Urol 38, 250–4.

    PubMed  CAS  Google Scholar 

  42. Beardo, P., Fernandez, P.L., Corral, J.M., et al. (2001) Undetectable prostate specific antigen in disseminated prostate cancer J Urol 166, 993.

    PubMed  CAS  Google Scholar 

  43. Dreicer, R. (1997) Metastatic prostate cancer: assessment of response to systemic therapy Semin Urol Oncol 15, 28–32.

    PubMed  CAS  Google Scholar 

  44. Bauer, K.S., Figg, W.D., Hamilton, J.M., et al. (1999) A pharmacokinetically guided Phase II study of carboxyamido-triazole in androgen-independent prostate cancer. Clin Cancer Res 5(9), 2324–9.

    PubMed  CAS  Google Scholar 

  45. Horti, J., Dixon, S.C., Logothetis, C., et al. (1999) Increased transcriptional activity of PSA in the presence of TNP-470, an angiogenesis inhibitor. Br J Cancer 79, 1588–93.

    PubMed  CAS  Google Scholar 

  46. Lofters, A., Juffs, H.G., Pond, G.R., et al. (2002) “PSA-itis”: knowledge of serum prostate specific antigen and other causes of anxiety in men with metastatic prostate cancer. J Urol 168(6), 2516–20.

    PubMed  Google Scholar 

  47. Hricak, H., Schoder, H., Pucar, D., et al. (2003) Advances in imaging in the postoperative patient with a rising prostate-specific antigen level Semin Oncol 30, 616–34.

    PubMed  Google Scholar 

  48. Benaron, D.A. (2002) The future of cancer imaging Cancer Metastasis Rev 21, 45–78.

    PubMed  CAS  Google Scholar 

  49. Yu, K.K., Hricak, H. (2000) Imaging prostate cancer Radiol Clin North Am 38, 59–85.

    PubMed  Google Scholar 

  50. Engelbrecht, M.R., Barentsz, J.O., Jager, G.J., et al. (2000) Prostate cancer staging with imaging BJU Int 86(1), 123–34.

    PubMed  Google Scholar 

  51. Haseman, M.K., Reed, N.L., Rosenthal, S.A. (1996) Monoclonal antibody imaging of occult prostate cancer in patients with elevated prostate-specific antigen. Positron emission tomography and biopsy correlation Clin Nucl Med 21(9), 704–13.

    PubMed  CAS  Google Scholar 

  52. Haseman, M.K., Rosenthal, S.A., Polascik, T.J. (2000) Capromab pendetide imaging of prostate cancer Cancer Biother Radiopharm 15(2):131–40.

    PubMed  CAS  Google Scholar 

  53. Fair, W.R., Israeli, R.S., Heston, W.D. (1997) Prostate-specific membrane antigen Prostate 32, 140–8.

    PubMed  CAS  Google Scholar 

  54. Elgamal, A.A., Holmes, E.H., Su, S.L., et al. (2000) Prostate-specific membrane antigen (PSMA): current benefits and future value. Semin Surg Oncol 18, 10–16.

    PubMed  CAS  Google Scholar 

  55. Roudier, M.P., Vesselle, H., True, L.D., et al. (2003) Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of biphosphonate therapy on bone scintigraphy results Clin Exp Metastasis 20, 171–80.

    PubMed  CAS  Google Scholar 

  56. Lee, C.T., Oesterling, J.E. (1997) Using prostate-specific antigen to eliminate the staging radionuclide bone scan Urol Clin North Am 24, 389–94.

    PubMed  CAS  Google Scholar 

  57. Modoni, S., Calo, E., Nardella, G., et al. (1997) PSA and bone scintigraphy Int J Biol Markers 12, 158–61.

    PubMed  CAS  Google Scholar 

  58. Murphy, G.P., Troychak, M.J., Cobb, O.E., et al. (1997) Evaluation of PSA, free PSA, PSMA, and total and bone alkaline phosphatase levels compared to bone scans in the management of patients with metastatic prostate cancer Prostate 33, 141–6.

    PubMed  CAS  Google Scholar 

  59. Coleman, R.E., Mashiter, G., Whitaker, K.B., et al. (1988) Bone scan flare predicts successful systemic therapy for bone metastases J Nucl Med 29, 1354–9.

    PubMed  CAS  Google Scholar 

  60. Bubley, G.J., Carducci, M., Dahut, W., et al. (1999) Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the prostate-specific antigen working group J Clin Oncol 17, 3461–7.

    PubMed  CAS  Google Scholar 

  61. DeLuca, S.A., Castronovo, F.P., Rhea, J.T. (1983) The effects of chemotherapy on bony metastases as measured by quantitative skeletal imaging Clin Nucl Med 8, 11–13.

    PubMed  CAS  Google Scholar 

  62. Drelichman, A., Decker, D.A., Al-Sarraf, M., et al. (1984) Computerized bone scan. A potentially useful technique to measure response in prostate carcinoma Cancer 53, 1061–5.

    PubMed  CAS  Google Scholar 

  63. Imbriaco, M., Larson, S.M., Yeung, H.W., et al. (1998) A new parameter for measuring metastatic bone involvement by prostate cancer: the bone scan index Clin Cancer Res 4, 1765–72.

    PubMed  CAS  Google Scholar 

  64. Noguchi, M., Kikuchi, H., Ishibashi, M., et al. (2003) Percentage of the positive area of bone metastasis is an independent predictor of disease death in advanced prostate cancer Br J Cancer 88(2), 195–201.

    PubMed  CAS  Google Scholar 

  65. Yahara, J., Noghuchi, M., Noda, S. (2003) Quantitative evaluation of bone metastases in patients with advanced prostate cancer during systemic treatment BJU Int 92, 379–84.

    PubMed  CAS  Google Scholar 

  66. Rafii, M., Firooznia, H., Kramer, E., et al. (1988) The role of computed tomography in evaluation of skeletal metastases J Comput Tomogr 12, 19–24.

    PubMed  CAS  Google Scholar 

  67. Harisinghani, M.G., Barentsz, J.O., Hahn, P.F., et al. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer N Eng J Med 348(25), 2491–9.

    Google Scholar 

  68. Bouchelouche, K., Oehr, P. (2008) Recent developments in urologic oncology: positron emission tomography molecular imaging Curr Opin Oncol 20, 321–6.

    PubMed  CAS  Google Scholar 

  69. Sanz, G., Rioja, J., Zudaire, J.J., et al. (2004) PET and prostate cancer World J Urol 22, 351–2.

    PubMed  CAS  Google Scholar 

  70. Conti, P.S., Lilien, D.L., Hawley, K., et al. (1996) PET and [F-18]-FDG in oncology: a clinical update. Nucl Med Biol 23, 717–35.

    PubMed  CAS  Google Scholar 

  71. Fischman, A.J. (1996) Positron emission tomography in the clinical evaluation of metastatic cancer J Clin Oncol 14(3), 691–6.

    PubMed  CAS  Google Scholar 

  72. Jadvar, H., Fischman, A.J. (1999) Evaluation of rare tumors with [F-18]fluorodeoxyglucose positron emission tomography. Clin Positron Imaging 2, 153–8.

    PubMed  Google Scholar 

  73. Kostakoglu, L., Agress, H., Jr., Goldsmith, S.J. (2003) Clinical role of FDG PET in evaluation of cancer patients Radiographics 23, 315–40.

    PubMed  Google Scholar 

  74. Macheda, M.L., Rogers, S., Bets, J.D. (2005) Molecular and cellular regulation of glucose transport (GLUT) proteins in cancer. J Cell Physiol 202, 654–62.

    PubMed  CAS  Google Scholar 

  75. Smith, T.A. (2000) Mammalian hexokinases and their abnormal expression in cancer Br J Biomed Sci 57, 170–8.

    PubMed  CAS  Google Scholar 

  76. Takahashi, N., Inoue, T., Lee, J., Yamaguchi, T., Shizukuishi, K. (2007) The roles of PET and PET/CT in the diagnosis and management of prostate cancer Oncology 72, 226–33.

    PubMed  Google Scholar 

  77. Effert, P.J., Bares, R., Handt, S., et al. (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 155, 994–8.

    PubMed  CAS  Google Scholar 

  78. Hofer, C., Laubenbacher, C., Block, T., et al. (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36, 31–5.

    PubMed  CAS  Google Scholar 

  79. Patel, P., Cohade, C., DeWeese, T., et al. (2002) Evaluation of metabolic activity of prostate gland with PET-CT. J Nucl Med 43(5), 119P.

    Google Scholar 

  80. Salminen, E., Hogg, A., Binns, D., et al. (2002) Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice Acta Oncol 41(5), 425–9.

    PubMed  Google Scholar 

  81. von Mallek, D., Backhaus, B., Muller, S.C., et al. (2006) Technical limits of PET/CT with 18FDG in prostate cancer. Aktuelle Urol 37, 218–21.

    Google Scholar 

  82. Liu, I.J., Zafar, M.B., Lai, Y.H., et al. (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer Urology 57, 108–11.

    PubMed  CAS  Google Scholar 

  83. Kao, P.F., Chou, Y.H., Lai, C.W. (2008) Diffuse FDG uptake in acute prostatitis Clin Nucl Med 33, 308–10.

    PubMed  Google Scholar 

  84. Hara, T., Bansal, A., DeGrado, T.R. (2006) Effect of hypoxia on the uptake of [methyl-3H]choline, [1–14C]acetate and [18F]FDG in cultured prostate cancer cells. Nucl Med Biol 33, 977–84.

    PubMed  CAS  Google Scholar 

  85. Pugachev, A., Ruan, S., Carlin, S., et al. (2005) Dependence of FDG uptake on tumor microenvironment Int J Radiat Oncol Biol Phys 62, 545–53.

    PubMed  CAS  Google Scholar 

  86. Etchebehere, E.C., Macapinlac, H.A., Gonen, M., Humm, K., Yeung, H.W., Akhurst, T., et al. (2002) Qualitative and quantitative comparison between images obtained with filtered back projection and iterative reconstruction in prostate cancer lesions of 18F-FDG PET. Q J Nucl Med 46, 122–30.

    PubMed  CAS  Google Scholar 

  87. Turlakow, A., Larson, S.M., Coakley, F., Akhurst, T., Gonen, M., Macapinlac, H.A., et al. (2001) Local detection of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose: comparison of filtered back projection and iterative reconstruction with segmented attenuation correction. Q J Nucl Med 45, 235–44.

    PubMed  CAS  Google Scholar 

  88. Shreve, P.D., Grossman, H.B., Gross, M.D., et al. (1996) Metastatic prostate cancer: initial findings of PET with FDG Radiology 199, 751–6.

    PubMed  CAS  Google Scholar 

  89. Oyama, N., Akino, H., Kanamaru, H., et al. (1998) Fluorodeoxyglucose positron emission tomography in diagnosis of untreated prostate cancer Nippon Rinsho 56, 2052–5.

    PubMed  CAS  Google Scholar 

  90. Oyama, N., Akino, H., Suzuki, Y., et al. (1999) The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29, 623–9.

    PubMed  CAS  Google Scholar 

  91. Oyama, N., Akino, H., Suzuki, Y., et al. (2001) FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation Nucl Med Commun 22, 963–9.

    PubMed  CAS  Google Scholar 

  92. Oyama, N., Kim, J., Jones, L.A., et al. (2002) MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model Nucl Med Biol 29, 783–90.

    PubMed  CAS  Google Scholar 

  93. Oyama, N., Akino, H., Suzuki, Y., et al. (2002) Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 4, 99–104.

    PubMed  Google Scholar 

  94. Chang, C.H., Wu, H.C., Tsai, J.J., et al. (2003) Detecting metastatic pelvic lymph nodes by (18)f-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int 70(4), 311–5.

    PubMed  Google Scholar 

  95. Schoder, H., Herrmann, K., Gonen, M., Hricak, H., Eberhard, S., Scardino, P., et al. (2005) 2-[18F]fluoro-2-deoxyglucose positron emission tomography for detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res 11, 4761–9.

    PubMed  Google Scholar 

  96. Jadvar, H., Pinski, J.K., Conti, P.S. (2003) FDG PET in suspected recurrent and metastatic prostate cancer Oncol Rep 10(5), 1485–8.

    PubMed  Google Scholar 

  97. Morris, N.J., Akhurst, T., Osman, I., et al. (2002) Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer Urology 59, 913–8.

    PubMed  Google Scholar 

  98. Morris, M.J., Akhurst, T., Larson, S.M., Ditullio, M., Chu, E., Siedlecki, K., et al. (2005) Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy Clin Cancer Res 11, 3210–6.

    PubMed  CAS  Google Scholar 

  99. Bucerius, J., Ahamadzadehfar, H., Hortling, N., Joe, A.Y., Palmedo, H., Biersack, H.J. (2007) Incidental diagnosis of a PSA-negative cancer by (18)FDG PET/CT in a patient with hypopharyngeal cancer. Prostate Cancer Prostatic Dis 10, 307–10.

    PubMed  CAS  Google Scholar 

  100. Agus, D.B., Golde, D.W., Squouros, G., Ballanqrud, A., Cordon-Cardo, C., Scher, H.I. (1998) Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal Cancer Res 58, 3009–14.

    PubMed  CAS  Google Scholar 

  101. Sung, J., Espiritu, J.I., Segall, G.M., Terris, M.K. (2003) Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer BJU Int 92, 24–7.

    PubMed  CAS  Google Scholar 

  102. Ludwig, V., Hopper, O.W., Martin, W.H., Kikkawa, R., Delbeke, D. (2003) [18F]fluoro- deoxyglucose positron emission tomography surveillance of hepatic metastases from prostate cancer following radiofrequency ablation: a case report. Am Surg 69, 593–8.

    PubMed  Google Scholar 

  103. Yeh, S.D., Imbriaco, M., Larson, S.M., et al. (1996) Detection of bony metastases of androgen-independent prostate cancer by PET-FDG Nucl Med Biol 23, 693–7.

    PubMed  CAS  Google Scholar 

  104. Haberkorn, U., Bellemann, M.E., Altmann, A., et al. (1997) PET 2-fluoro-2-deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy with gemcitabine. J Nucl Med 38, 1215–21.

    PubMed  CAS  Google Scholar 

  105. Heicappell, R., Muller-Mattheis, V., Reinhardt, M., et al. (1999) Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[(18)F]-2-deoxy-D-glucose. Eur Urol 36, 582–7.

    PubMed  CAS  Google Scholar 

  106. Sanz, G., Robles, J.E., Gimenez, M., et al. (1999) Positron emission tomography with 18fluorine-labelled deoxyglucose: utility in localized and advanced prostate cancer. BJU Int 84, 1028–31.

    PubMed  CAS  Google Scholar 

  107. Shimizu, N., Masuda, H., Yamanaka, H., et al. (1999) Fluorodeoxyglucose positron emission tomography scan of prostate cancer bone metastases with flare reaction after endocrine therapy J Urol 161, 608–9.

    PubMed  CAS  Google Scholar 

  108. Kotzerke, J., Gschwend, J.E., Neumaier, B. (2002) PET for prostate cancer imaging: still a quandary or the ultimate solution J Nucl Med 43(2), 200–2.

    PubMed  Google Scholar 

  109. Zhang, Y., Saylor, M., Wen, S., et al. (2006) Longitudinally quantitative 2-deoxy-2-[18F]fluoro-D-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol Imaging Biol 8, 300–8.

    PubMed  CAS  Google Scholar 

  110. Mullerad, M., Eisenberg, D.P., Akhurst, T.J., et al. (2006) Use of positron emission tomography to target prostate cancer gene therapy by oncolytic herpes simplex virus Mol Imaging Biol 8, 30–5.

    PubMed  Google Scholar 

  111. Jadvar, H., Li, X., Shahinian, A., et al. (2005) Glucose metabolism of human prostate cancer mouse xenografts Mol Imaging 4, 91–7.

    PubMed  Google Scholar 

  112. Seltzer, M.A., Barbaric, Z., Belldegrun, A., et al. (1999) Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer J Urol 162, 1322–8.

    PubMed  CAS  Google Scholar 

  113. Jadvar, H. (2008) [F-18]-Fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET-CT) in metastatic prostate cancer. USC Norris Comprehensive Cancer Center. ClinicalTrials.gov Identifier: NCT00282906. Accessed August 20, 2008.

    Google Scholar 

  114. Yoshimoto, M., Waki, A., Yonekura, Y., et al. (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells Nucl Med Biol 28, 117–22.

    PubMed  CAS  Google Scholar 

  115. Shreve, P.D., Lannone, P., Weinhold, P. (2002) Cellular metabolism of [1-C14]-acetate in prostate cancer cells in vitro. J Nucl Med 43(5), 272P.

    Google Scholar 

  116. Liu, Y. (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer Prostate Cancer Prostatic Dis 9, 230–4.

    PubMed  CAS  Google Scholar 

  117. Vavere, A.L., Kridel, S.J., Wheeler, F.B., et al. (2008) 1–11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 49, 327–34.

    PubMed  CAS  Google Scholar 

  118. Pflug, B.R., Pecher, S.M., Brink, A.W., et al. (2003) Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model Prostate 57, 245–54.

    PubMed  CAS  Google Scholar 

  119. Seltzer, M.A., Jahan, S.A., Dahlbom, M., et al. (2003) Combined metabolic imaging using C-11 acetate and FDG PET for the evaluation of patients with suspected recurrent prostate cancer. J Nucl Med 44(5), 132P.

    Google Scholar 

  120. Kato, T., Tsukamoto, E., Kuge, Y., et al. (2002) Accumulation of [(11)C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 29(11), 1492–5.

    PubMed  CAS  Google Scholar 

  121. Hautzel, H., Muller-Mattheis, V., Herzog, H., et al. (2002) The (11C) acetate positron emission tomography in prostatic carcinoma. New prospects in metabolic imaging Urologe A 41, 569–76.

    PubMed  CAS  Google Scholar 

  122. Kotzerke, J., Volkmer, B.G., Neumaier, B., et al. (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29(10), 1380–4.

    PubMed  CAS  Google Scholar 

  123. Oyama, N., Akino, H., Kanamaru, H., et al. (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43(2), 181–6.

    PubMed  CAS  Google Scholar 

  124. Seltzer, M.A., Jahan, S., Dahlbom, M., et al. (2002) C-11 acetate PET imaging of primary and locally recurrent prostate cancer: comparison to normal controls. J Nucl Med 43(5), 117P.

    Google Scholar 

  125. Oyama, N., Miller, T.R., Dehdashti, F., et al. (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4), 549–55.

    PubMed  CAS  Google Scholar 

  126. Dimitrakopoulou-Strauss, A., Strauss, L.G. (2003) PET imaging of prostate cancer with 11C-acetate. J Nucl Med 44(4), 556–8.

    PubMed  Google Scholar 

  127. Sandblom, G., Sorensen, J., Lundin, N., et al. (2006) Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate specific antigen relapse after radical prostatectomy. Urology 67, 996–1000.

    PubMed  Google Scholar 

  128. Jadvar, H., Li, X., Park, R., Shahinian, A., et al. (2008) Quantitative autoradiography of radiolabeled acetate in mouse xenografts of human prostate cancer J Nucl Med 47(1), 421P- 422P.

    Google Scholar 

  129. Albrecht, S., Buchegger, F., Soloviev, D., et al. (2007) 11C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34, 185–96.

    PubMed  Google Scholar 

  130. Fricke, E., Machtens, S., Hofmann, M., et al. (2003) Positron emission tomography with (11)C- acetate and (18)F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 30(4), 607–11.

    PubMed  CAS  Google Scholar 

  131. Vees, H., Buchegger, F., Albrecht, S., et al. (2007) 18F-choline and/or 11C-acetae positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/mL) after radical prostatectomy. BJU Int 99, 1415–20.

    PubMed  CAS  Google Scholar 

  132. Watchter, S., Tomek, S., Kurtaran, A., et al. (2006) 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol 24, 2513–9.

    Google Scholar 

  133. Schiepers, C., Hoh, C.K., Nuyts, J., et al. (2008) 1–11C-acetate kinetics of prostate cancer. J Nucl Med 49, 206–15.

    PubMed  CAS  Google Scholar 

  134. Seltzer, M.A., Jahan, S.A., Sparks, R., et al. (2004) Radiation dose estimates in humans for (11)C-acetate whole-body. PET J Nucl Med 45(7), 1233–6.

    CAS  Google Scholar 

  135. Matthies, A., Ezziddin, S., Ulrich, E.M., et al. (2004) Imaging of prostate cancer metastases with 18F-fluoroacetate using PET/CT. Eur J Nucl Med Mol Imaging 31, 797.

    PubMed  Google Scholar 

  136. Ponde, D.E., Dence, C.S., Oyama, N., et al. (2007) 18F-fluoroacetate: a potential acetate analog for prostate tumors imaging – in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 48, 420–8.

    PubMed  CAS  Google Scholar 

  137. Zheng, Q.H., Gradner, T.A., Raikwar, S., et al. (2004) [11C]choline as a PET biomarker for assessment of prostate cancer tumor models. Bioorg Med Chem 12, 2887–93.

    PubMed  CAS  Google Scholar 

  138. Hara, T., Kosaka, N., Kishi, H. (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39(6), 990–5.

    PubMed  CAS  Google Scholar 

  139. Kotzerke, J., Prang, J., Neumaier, B., et al. (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27(9), 1415–9.

    PubMed  CAS  Google Scholar 

  140. Picchio, M., Landoni, C., Messa, C., et al. (2002) Positive [11C]choline and negative [18F]FDG with PET in recurrence of prostate cancer. Am J Roentgenol AJR 179, 482–4.

    CAS  Google Scholar 

  141. de Jong, I.J., Pruim, J., Elsinga, P.H., et al. (2002) Visualization of prostate cancer with 11C- choline positron emission tomography. Eur Urol 42(1), 18–23.

    PubMed  Google Scholar 

  142. Blumstein, N.M., Wollenweber, F., Wahl, A., et al. (2003) [11C]choline PET/CT a therapy optimizing tool for prostatectomised patients with increasing PSA level. J Nucl Med 44(5), 133P.

    Google Scholar 

  143. de Jong, I.J., Pruim, J., Elsinga, P.H., et al. (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44(3), 331–5.

    PubMed  Google Scholar 

  144. de Jong, I.J., Pruim, J., Elsinqa, P.H., et al. (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44, 38–9.

    Google Scholar 

  145. Picchio, M., Messa, C., Landoni, C., et al. (2003) Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose- positron emission tomography. J Urol 169(4), 1337–40.

    PubMed  CAS  Google Scholar 

  146. Kanda, T., Nakagomi, K., Goto, S., et al. (2008) Visualization of prostate cancer with 11C- choline positron emission tomography (PET): localization of primary and recurrent prostate cancer. Hinyokika Kiyo 54, 325–32.

    PubMed  Google Scholar 

  147. Reske, S.N., Blumstein, N.M., Neumaier, B., et al. (2006) Imaging prostate cancer with 11C- choline PET/CT. J Nucl Med 47, 1249–54.

    PubMed  CAS  Google Scholar 

  148. Reske, S.N. (2008) [(11C]Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumor stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35(9), 1740–1.

    PubMed  Google Scholar 

  149. Reske, S.N., Blumstein, N.M., Glatting, G. (2008) [(11C)]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 35, 9–17.

    PubMed  Google Scholar 

  150. Breeuwsma, A.J., Pruim, J., Jongen, M.M., et al. (2005) In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging 32, 668–73.

    PubMed  Google Scholar 

  151. Reischl, G., Bieg, C., Schmiedl, O., et al. (2004) Highly efficient automated synthesis of [(11)C]choline for multi dose utilization. Appl Radiat Isot 60, 835–8.

    PubMed  CAS  Google Scholar 

  152. DeGrado, T.R., Baldwin, S.W., Wang, S., et al. (2001) Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42, 1805–14.

    PubMed  CAS  Google Scholar 

  153. DeGrado, T.R., Coleman, R.E., Wang, S., et al. (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61(1), 110–117.

    PubMed  CAS  Google Scholar 

  154. DeGrado, T.R., Reiman, R.E., Price, D.T., et al. (2002) Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 43, 92–6.

    PubMed  CAS  Google Scholar 

  155. Hara, T., Kosaka, N., Kishi, H. (2002) Development of F-18 fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43, 187–99.

    PubMed  CAS  Google Scholar 

  156. Sutinen, E., Nurmi, M., Roivainen, A., et al. (2004) Kinetics of [(11C)]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 31, 317–24.

    PubMed  CAS  Google Scholar 

  157. Testa, C., Schiavina, R., Lodi, R., et al. (2007) Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET-CT. Radiology 244, 797–806.

    PubMed  Google Scholar 

  158. Yamaguchi, T., Lee, J., Uemura, H., et al. (2005) Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 32, 742–8.

    PubMed  CAS  Google Scholar 

  159. Park, H., Piert, M.R., Khan, A., et al. (2008) Registration methodology for histological sections and in vivo imaging of human prostate Acad Radiol 15, 1027–39.

    PubMed  Google Scholar 

  160. Eschmann, S.M., Pfannenberg, A.C., Rieger, A., et al. (2007) Comparison of 11C-choline PET-CT and whole body MRI for staging of prostate cancer. Nuklearmedizin 46, 161–8.

    PubMed  CAS  Google Scholar 

  161. Rinnab, L., Blumstein, N.M., Mottaghy, F.M., et al. (2007) 11C-choline positron emission tomography/computed tomography and transrectal ultrasonography for staging localized prostate cancer. BJU Int 99, 1421–6.

    PubMed  CAS  Google Scholar 

  162. Scher, B., Seitz, M., Albinger, W., et al. (2007) Value of 11C-choline PET and PET-CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 34, 45–53.

    PubMed  Google Scholar 

  163. Farsad, M., Schiavina, R., Castellucci, P., et al. (2005) Detection and localization of prostate cancer: correlation of (11C)C-choline PET/CTPET-CT with histopathologic step-section analysis. J Nucl Med 46:1642–9.

    PubMed  CAS  Google Scholar 

  164. Martorana, G., Schiavina, R., Cort, B., et al. (2006) 11C-choline positron emission tomography/computed tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 176, 954–60.

    PubMed  CAS  Google Scholar 

  165. Kishi, H., Minowada, S., Kosaka, N., et al. (2002) C-11 choline PET helps determine the outcome of hormonal therapy of prostate cancer. J Nucl Med 43(5), 117P.

    Google Scholar 

  166. Jadvar, H., Gurbuz, A., Li, X., et al. (2008) Choline autoradiography of human prostate cancer xenograft: effect of castration Mol Imaging 7(3), 147–52.

    PubMed  Google Scholar 

  167. Krause, B.J., Souvatzpglou, M., Tuncel, M., et al. (2008) The detection rate of [(11)C]Choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35, 18–23.

    PubMed  CAS  Google Scholar 

  168. Scattoni, V., Picchio, M., Suardi, N., et al. (2007) Detection of lymph-node metastases with integrated [11C]choline in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Radiol 52, 423–9.

    Google Scholar 

  169. Tuneel, M., Souvatzoglou, M., Herrmann, K., et al. (2008) (11C)Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 35, 689–95.

    Google Scholar 

  170. Schiavina, R., Scattoni, V., Castellucci, P., et al. (2008) (11C)-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 54, 392–401.

    PubMed  Google Scholar 

  171. Price, D.T., Coleman, R.E., Liao, R.P., et al. (2002) Comparison of [18 F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 168, 273–80.

    PubMed  Google Scholar 

  172. Igerc, I., Kohlfurst, S., Gallowitsch, H.J., et al. (2008) The value of 18F-choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localization of prostate cancer. Eur J Nucl Med Mol Imaging 35, 976–83.

    PubMed  CAS  Google Scholar 

  173. Yoshida, S., Nakagomi, K., Goto, S., et al. (2005) 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 74, 214–20.

    PubMed  CAS  Google Scholar 

  174. Kwee, S.A., Coel, M.N., Lim, J., et al. (2005) Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol 173, 252–5.

    PubMed  Google Scholar 

  175. Kwee, S.A., Wei, H., Sesterhenn, I., et al. (2006) Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 47, 262–9.

    PubMed  Google Scholar 

  176. Pelosi, E., Arena, V., Skanjeti, A., et al. (2008) Role of whole-body (18F)-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med 113(6), 895–904.

    PubMed  CAS  Google Scholar 

  177. Schilling, D., Schlemmer, H.P., Wagner, P.H., et al. (2008) Histological verification of 11C- choline-positron emission tomography/computed tomography positive lymph nodes in patients with biochemical failure after treatment for localized prostate cancer. BJU Int 102, 446–51.

    PubMed  Google Scholar 

  178. Husarik, D.B., Miralbell, R., Dubs, M., et al. (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35, 253–63.

    PubMed  Google Scholar 

  179. Rinnab, L., Mottaghy, F.M., Blumstein, N.M., et al. (2007) Evaluation of [11C]choline positron emission tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int 100, 786–93.

    PubMed  CAS  Google Scholar 

  180. Cimitan, M., Bortolus, R., Morassut, S., et al. (2006) 18F-fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33, 1387–98.

    PubMed  Google Scholar 

  181. Giovacchini, G., Picchio, M., Coradesschi, E., et al. (2008) [(11C)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumor stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35, 1065–73.

    PubMed  CAS  Google Scholar 

  182. Heinisch, M., Dirisamer, A., Loidl, W., et al. (2006) Positron emission tomography/computed tomography with F-18 fluorocholine for restaging of prostate cancer patients: meaningful at PSA <5 ng/mL. Mol Imaging Biol 8, 43–8.

    PubMed  Google Scholar 

  183. Kotzerke, J., Volkmer, B.G., Glatting, G., et al. (2003) Intra-individual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42, 25–30.

    PubMed  CAS  Google Scholar 

  184. Dotan, Z.A. (2008) Bone imaging in prostate cancer Nat Clin Prac Urol 5, 434–44.

    Google Scholar 

  185. Langsteger, W., Heinisch, M., Fogelman, I. (2006) The role of fluorodexoyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36, 73–92.

    PubMed  Google Scholar 

  186. Hsu, W.K., Virk, M.S., Feeley, B.T., et al. (2008) Characterization of osteolytic, osteoblastic, and mixed lesions in a prostate cancer mouse model using 18F-FDG and 18F-fluoride PET/CT. J Nucl Med 49, 414–21.

    PubMed  Google Scholar 

  187. Beheshti, M., Vali, R., Waldenberger, P., et al. (2008) Detection of bone metastases in patients with prostate cancer by F-18 fluorocholine and F-18 fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35(10), 1766–74.

    PubMed  Google Scholar 

  188. Even-Sapir, E., Metser, U., Mishani, E., et al. (2006) The detection of bone metastases in patients with high risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-filed-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47, 287–97.

    PubMed  Google Scholar 

  189. Yang, H., Berger, F., Tran, C., et al. (2003) MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate 55, 39–47.

    PubMed  Google Scholar 

  190. Hwang, D.R., Mathias, C.J., Welch, M.J., et al. (1990) Imaging prostate derived tumors with PET and N-(3-[18F]fluoropropyl)putrescine. Int J Rad Appl Instrum B 17, 525–32.

    PubMed  CAS  Google Scholar 

  191. Inaba, T. (1992) Quantitative measurements of prostatic blood flow and blood volume by positron emission tomography J Urol 148, 1457–60.

    PubMed  CAS  Google Scholar 

  192. Liu, A., Carlson, K.E., Katzenllenbogen, J.A. (1992) Synthesis of high affinity fluorine- substituted ligands for the androgen receptor. Potential agents for imaging prostatic cancer by positron emission tomography J Med Chem 35, 2113–29.

    PubMed  CAS  Google Scholar 

  193. Wang, G.J., Volkow, N.D., Wolf, A.P., et al. (1994) Positron emission tomography study of human prostatic adenocarcinoma using carbon-11 putrescine. Nucl Med Biol 21(1), 77–82.

    PubMed  CAS  Google Scholar 

  194. Macapinlac, H.A., Humm, J.L., Akhurst, T., et al. (1999) Differential metabolism and pharmacokinetics of L-[1-(11)C]-methionine and 2-[(18)F]fluoror-2-deoxy-D-glucose (FDG) in androgen independent prostate cancer. Clin Positron Imaging 2, 173–81.

    PubMed  Google Scholar 

  195. Kalkner, K.M., Ginman, C., Nilsson, S., et al. (1997) Positron emission tomography (PET) with 11C-5-hydroxytryptophan (5-HTP) in patients with metastatic hormone-refractory prostatic adenocarcinoma. Nucl Med Biol 24, 319–25.

    PubMed  CAS  Google Scholar 

  196. Kalkner, K.M., Nilsson, S., Bergstrom, M., et al. (1997) PET with hydroxytryptophan as tracer in hormone-refractory prostatic adenocarcinoma: evaluation of decarboxylation in vivo In Vivo 11, 377–81.

    PubMed  CAS  Google Scholar 

  197. Kurdziel, K., Bacharach, S., Carrasquillo, J., et al. (2000) Using PET 18F-FDG, 11CO, and 15O-water for monitoring prostate cancer during a phase II anti-angiogenic drug trial with thalidomide. Clin Positron Imaging 3, 144.

    PubMed  Google Scholar 

  198. Nunez, R., Macapinlac, H.A., Yeung, H., et al. (2002) Combined 18F-FDG and C-11 methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43, 46–55.

    PubMed  Google Scholar 

  199. Chen, X., Jadvar, H., Pinski, J.K., et al. (2003) PET imaging of prostate cancer xenografts in bone Mol Imaging#110.

    Google Scholar 

  200. Dehdashti, F., Picus, J., Michalski, J.M., et al. (2003) Positron emission tomographic assessment of androgen receptors in prostate carcinoma. J Nucl Med 44(5), 131P.

    Google Scholar 

  201. Kurdziel, K.A., Figg, W.D., Carrasquillo, J.A., et al. (2003) Using positron emission tomography 2-deoxy-2-[18F]fluoro-D-glucose, 11CO, and 15O-water for monitoring androgen independent prostate cancer. Mol Imaging Biol 5, 86–93.

    PubMed  Google Scholar 

  202. Oyama, N., Ponde, D.E., Dence, C., et al. (2004) Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation J Nucl Med 45, 519–25.

    PubMed  CAS  Google Scholar 

  203. Mintz, A., Wang, L., Ponde, D.E. (2008) Comparison of radiolabeled choline and ethanolamine as a probe for cancer detection Cancer Biol Ther 7(5), 742–7.

    PubMed  CAS  Google Scholar 

  204. Toth, G., Lengyel, Z., Balkay, L., et al. (2005) Detection of cancer with 11C-methionine positron emission tomography. J Urol 173, 66–9.

    PubMed  Google Scholar 

  205. Larson, S.M., Morris, M., Gunther, I., et al. (2004) Tumor localization of 16-beta-18F-fluoro-5-alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45, 366–73.

    PubMed  CAS  Google Scholar 

  206. Dehdashti, F., Picus, J., Michalski, J.M., et al. (2005) Positron tomographic assessment of androgen receptors in prostate carcinoma Eur J Nucl Med Mol Imaging 32, 344–50.

    PubMed  Google Scholar 

  207. Zanzonico, P.B., Finn, R., Pentlow, K.S., et al. (2004) PET-based radiation dosimetry in man of 18F-fluorodihydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med 45, 1966–71.

    PubMed  CAS  Google Scholar 

  208. Oka, S., Hattori, R., Kurosaki, F., et al. (2007) A preliminary study of anti-1-amino-3–18F-fluorocyclobuyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med 48, 46–55.

    PubMed  CAS  Google Scholar 

  209. Schuster, D.M., Votaw, J.R., Nieh, P.T., et al. (2007) Initial experience with radiotracer anti-1-amino-3–18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 48, 56–63.

    PubMed  CAS  Google Scholar 

  210. Shields, A.F. (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology Mol Imaging Biol 8, 141–50.

    PubMed  Google Scholar 

  211. Couturier, O., Leost, F., Campone, M., et al. (2005) Is 3′-deoxy-[18F]fluorothymidine ([18F])-FLT) the next tracer for routine clinical PET after [18]-FDG. Bull Cancer 92, 789–98.

    PubMed  CAS  Google Scholar 

  212. Conti, P.S., Alauddin, M.M., Fissekis, J.R., et al. (1995) Synthesis of 2′-fluoro-5-[11C]-methyl-1-beta-D-arabinofurasyluracil ([11C]-FMAU): a potential nucleoside analog for in vivo study of cellular proliferation with PET. Nucl Med Biol 22, 783–9.

    PubMed  CAS  Google Scholar 

  213. Nishii, R., Volgia, A.Y., Mawlawi, O., et al. (2008) Evaluation of 2′-deoxy-2′-[(18)F]fluoro-5-methyl-1-beta-L:-arabinofuranosyluracil ([(18)F]-L:-FMAU) as a PET imaging agent for cellular proliferation: comparison with [(18)F]-D:-FMAU and [(18)F]FLT. Eur J Nucl Med Mol Imaging 35, 990–8.

    PubMed  Google Scholar 

  214. Bading, J.R., Shahinian, A.H., Bathija, P., et al. (2000) Pharmacokinetics of the thymidine analog 2′-fluoro-5-[(14)C]-methyl-1-beta-D-arabinofuranosyluracil [(14)C]FMAU in rat prostate tumor cell. Nucl Med Biol 27, 361–8.

    PubMed  CAS  Google Scholar 

  215. Bading, J.R., Shahinian, A.H., Vail, A., et al. (2004) Pharmacokinetics of the thymidine analog 2′-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil (FMAU) in tumor-bearing rats. Nucl Med Biol 31, 407–18.

    PubMed  CAS  Google Scholar 

  216. Tehrani, O.S., Douglas, K.A., Lawhorn-Cres, J.M., et al. (2008) Tracking cellular stress with labeled FMAU reflects changes in mitochondrial TK2. Eur J Nucl Med Mol Imaging 35, 1480–8.

    PubMed  CAS  Google Scholar 

  217. Tehrani, O.S., Muzik, O., Heilbrun, L.K., et al. (2007) Tumor imaging using 1-(2′-deoxy-18F-fluoro-beta-D-arabinofuranosyl)thymine and PET. J Nucl Med 48, 1436–41.

    PubMed  CAS  Google Scholar 

  218. Sun, H., Mangner, T.J., Collins, J.M., et al. (2005) Imaging DNA synthesis in vivo with 18F-FMAU and PET. J Nucl Med 46(2), 292–6.

    PubMed  CAS  Google Scholar 

  219. Sun, H., Sloan, A., Mangner, T.J., et al. (2005) Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur J Nucl Med Mol Imaging 32, 15–22.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Institutes of Health – National Cancer Institute Grant No. R01-CA111613 and R21- CA142426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Jadvar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Jadvar, H. (2011). Prostate Cancer. In: Juweid, M., Hoekstra, O. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 727. Humana Press. https://doi.org/10.1007/978-1-61779-062-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-062-1_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-061-4

  • Online ISBN: 978-1-61779-062-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics