Skip to main content

Cytogenetic Analysis of Cancer Cell Lines

  • Protocol
  • First Online:
Cancer Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 731))

Abstract

Cancer genes are often deregulated by genomic rearrangements. Accordingly, analysis of the participant chromosomes responsible now occupies a key role in characterizing and identifying cancer cell lines. Cytogenetics may also be used to study the nature and extent of chromosome breakage induced by radiation or chemicals (“clastogenesis”), to distinguish individual cells or clones within a tumor cell population and to monitor the stability of chromosome rearrangements. This chapter describes cytogenetic procedures for characterizing cancer cells in culture. Cell lines allow the use of a wider range of harvesting and hypotonic treatments to optimize metaphase chromosome preparations than that possible with primary cultures. This assists improved banding, fluorescence in situ hybridization (FISH), and Spectral Karyotyping (SKY) analysis for research, rendering cell lines ideal tools for oncogenomics, ideally in parallel with transcriptomic analysis of the same cells. The experience of the writers with more than 800 cell lines has shown that no single hypotonic harvesting protocol is adequate consistently to deliver satisfactory chromosome preparations. Thus, evidence-based protocols are described for hypotonic harvesting, rapid G-banding, and FISH and SKY analysis of cell cultures to allow troubleshooting and fine-tuning to suit the requirements of individual cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacLeod, R.A.F., Nagel, S., Scherr, M., Schneider, B., Dirks, W. G., Uphoff, C. C., et al. (2008) Human leukemia and lymphoma cell lines as models and resources. Current Medicinal Chemistry 15, 339–359.

    Google Scholar 

  2. Mitelman, F., Johansson, B., and Mertens, F. (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7, 233–45.

    Google Scholar 

  3. Deininger, M., Buchdunger, E., Druker, B. J. (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–53.

    Google Scholar 

  4. Drexler, H. G, MacLeod, R. A. F., and Uphoff, C. C. (1999) Leukemia cell lines: in vitro models for the study of Philadelphia chromosome-positive leukemia. Leukemia Res 23, 207–15.

    Google Scholar 

  5. Drexler, H. G., MacLeod, R. A. F., Borkhardt, A., and Janssen, J. W. G. (1995) Recurrent chromosomal translocations and fusion genes in leukemia–lymphoma cell lines. Leukemia 9, 480–500.

    Google Scholar 

  6. Marini, P., MacLeod, R. A. F., Treuner, C., Bruchelt, G., Böhm, W., Wolburg, H., et al. (1999) SiMa, a new neuroblastoma cell line combining poor prognostic cytogenetic markers with high adrenergic differentiation. Cancer Genet Cytogenet 112, 161–4.

    Google Scholar 

  7. Drexler, H. G., Matsuo, Y., and MacLeod, R. A.F. (2000) Continuous hematopoietic cell lines as model systems for leukemia–lymphoma research. Leukemia Res 24, 881–911.

    Google Scholar 

  8. Tosi, S., Giudici, G., Rambaldi, A., Scherer, S.W., Bray-Ward, P., Dirscherl, L., et al. (1999) Characterization of the human myeloid ­leukemia-derived cell line GF-D8 by ­multiplex fluorescence in situ hybridization, subtelomeric probes, and comparative genomic hybridization. Genes Chromosomes Cancer 24, 213–21.

    Google Scholar 

  9. Schneider, B., Nagel, S., Kaufmann, M., Winkelmann, S., Drexler, H. G., and MacLeod, R. A. F. (2008) t(3;7)(q27;q32) fuses BCL6 to a non-coding region at FRA7H near miR-29. Leukemia 22, 1262–6.

    Google Scholar 

  10. Vanasse, G. J., Concannon, P., and Willerford, D. M. (1999) Regulated genomic instability and neoplasia in the lymphoid lineage. Blood 94, 3997–4010.

    Google Scholar 

  11. Küppers, R. and Dalla-Favera, R. (2001) Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–94.

    Google Scholar 

  12. MacLeod, R. A. F., Dirks, W. G., Matsuo, Y., Kaufmann, M., Milch, H., and Drexler, H. G. (1999) Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer 83, 555–63.

    Google Scholar 

  13. Drexler, H. G., Dirks, W. G., and MacLeod, R. A.F. (1999) False human hematopoietic cell lines: cross-contaminations and misinterpretations. Leukemia 13, 1601–7.

    Google Scholar 

  14. Nelson-Rees, W. A., Daniels, D. W., and Flandermeyer, R. R. (1981) Cross-contamination of cells in culture. Science 212, 446–52.

    Google Scholar 

  15. Markovic, O. and Markovic, N. (1998) Cell cross-contamination in cell cultures: the silent and neglected danger. In Vitro Cell Dev Biol Anim 34, 1–8.

    Google Scholar 

  16. MacLeod, R. A. F., Dirks, W. G., and Drexler, H. G. (2002) Persistent use of misidentified cell lines and its prevention. Genes Chromosomes Cancer 33, 103–5.

    Google Scholar 

  17. Stacey, G.N., Masters, J. R., Hay, R.J., Drexler, H. G., MacLeod, R. A. F., and Frechney, R. I. (2000) Cell contamination leads to inaccurate data: We must take action now. Nature 403, 356.

    Google Scholar 

  18. Caspersson, T., Zech, L., and Johansson, C. (1970) Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res 60, 315–19.

    Google Scholar 

  19. Sumner, A. T., Evans, H. J., and Buckland, R. A. (1971) New technique for distinguishing between human chromosomes. Nature New Biol 232, 31–2.

    Google Scholar 

  20. Seabright, M. (1973) Improvement of trypsin method for banding chromosomes. Lancet 1, 1249–50.

    Google Scholar 

  21. Rowley, J. D. (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine ­fluorescence and Giemsa staining. Nature 243, 290–3.

    Google Scholar 

  22. Nowell, P. C. and Hungerford, D. A. (1960) A minute chromosome in human granulocytic leukemia. Science 132, 1497.

    Google Scholar 

  23. Cremer, T., Lichter, P., Borden, J., Ward, D. C., and Manuelidis, L. (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80, 235–46.

    Google Scholar 

  24. Lichter, P., Cremer, T., Borden, J., Manuelidis, L., and Ward, D. C. (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80, 224–234.

    Google Scholar 

  25. Lichter, P. (1997) Multicolor FISHing: what’s the catch? Trends Genet 12, 475–79.

    Google Scholar 

  26. MacLeod, R. A. F., Kaufmann, M., and Drexler, H.G. (2007) Cytogenetic harvesting of commonly used tumor cell lines. Nature Protocols 2, 372–82.

    Google Scholar 

  27. Kubonishi, I., Niiya, K., and Miyoshi, I. (1985) Establishment of a new human lymphoma line that secretes plasminogen activator. Jpn J Cancer Res 76, 12–5.

    Google Scholar 

  28. Kubonishi, I., Niiya, K., Yamashita, M., Yano, S., Abe, T., Ohtsuki, Y., and Miyoshi, I. (1986) Characterization of a new human lymphoma cell line (RC-K8) with t(11;14) chromosome abnormality. Cancer 58, 1453–60.

    Google Scholar 

  29. ISCN 1985: An International System for Human Cytogenetic Nomenclature: report of the Standing Committee on Human Cytogenetic Nomenclature. Karger, Basel.

    Google Scholar 

  30. ISCN 1991: Guidelines for Cancer Cytogenetics: Supplement to an International System for Human Cytogenetic Nomenclature. Karger, Basel.

    Google Scholar 

  31. ISCN 2009: An International System for Human Cytogenetic Nomenclature: Recommendations of the International Standing Committee on Human Cytogenetic Nomenclature. Published in collaboration with “Cytogenetic and Genome Research”, Karger, Basel, in press, 2009.

    Google Scholar 

  32. Drexler, H. G. (2001) The Leukemia-Lymphoma Cell Line FactsBook, Academic Press, San Diego.

    Google Scholar 

  33. Drexler, H. G. (2009) Guide to Leukemia-Lymphoma Cell Lines, eBook (available from the author), DSMZ, Braunschweig, Germany.

    Google Scholar 

Download references

Acknowledgment

We wish to thank Maren Kaufmann for her expert technical input and suggestions, many of which are silently incorporated into the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick A. F. MacLeod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

MacLeod, R.A.F., Kaufmann, M., Drexler, H.G. (2011). Cytogenetic Analysis of Cancer Cell Lines. In: Cree, I. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 731. Humana Press. https://doi.org/10.1007/978-1-61779-080-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-080-5_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-079-9

  • Online ISBN: 978-1-61779-080-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics