Skip to main content

NMR Spectroscopy to Study the Dynamics and Interactions of CFTR

  • Protocol
  • First Online:
Cystic Fibrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 741))

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is a multi-domain membrane chloride channel whose activity is regulated by ATP at two nucleotide-binding domains (NBD1 and NBD2) and by phosphorylation of the regulatory (R) region. The NBDs and the R region have functionally relevant motions that are critical for channel gating. Nuclear magnetic resonance (NMR) spectroscopy is a highly useful technique for obtaining information on the structure and interactions of CFTR and is extremely powerful for probing dynamics. NMR approaches for studying CFTR are reviewed, using our previous NBD1 and the R region results to provide examples. These NMR data are yielding insights into the dynamic properties and interactions that facilitate normal CFTR regulation as well as pathological effects of mutations, including the most common disease mutant, deletion of F508 in NBD1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rommens, J. M., Iannuzzi, M. C., Kerem, B., Drumm, M. L., Melmer, G., Dean, M., et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065.

    PubMed  CAS  Google Scholar 

  2. Kartner, N., Hanrahan, J. W., Jensen, T. J., Naismith, A. L., Sun, S. Z., Ackerley, C. A., et al. (1991) Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64, 681–691.

    PubMed  CAS  Google Scholar 

  3. Bear, C. E., Li, C. H., Kartner, N., Bridges, R. J., Jensen, T. J., Ramjeesingh, M., et al. (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68, 809–818.

    PubMed  CAS  Google Scholar 

  4. Dean, M., Rzhetsky, A., and Allikmets, R. (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156–1166.

    PubMed  CAS  Google Scholar 

  5. Anderson, M. P., Rich, D. P., Gregory, R. J., Smith, A. E., and Welsh, M. J. (1991) Generation of cAMP-activated chloride currents by expression of CFTR. Science 251, 679–682.

    PubMed  CAS  Google Scholar 

  6. Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J., and Smith, A. E. (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66, 1027–1036.

    PubMed  CAS  Google Scholar 

  7. Ma, J., Tasch, J. E., Tao, T., Zhao, J., Xie, J., Drumm, M. L., et al. (1996) Phosphorylation-dependent block of cystic fibrosis transmembrane conductance regulator chloride channel by exogenous R domain protein. J. Biol. Chem. 271, 7351–7356.

    PubMed  CAS  Google Scholar 

  8. Picciotto, M. R., Cohn, J. A., Bertuzzi, G., Greengard, P., and Nairn, A. C. (1992) Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 267, 12742–12752.

    PubMed  CAS  Google Scholar 

  9. Tabcharani, J. A., Chang, X. B., Riordan, J. R., and Hanrahan, J. W. (1991) Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352, 628–631.

    PubMed  CAS  Google Scholar 

  10. Dawson, R. J., and Locher, K. P. (2006) Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185.

    PubMed  CAS  Google Scholar 

  11. Awayn, N. H., Rosenberg, M. F., Kamis, A. B., Aleksandrov, L. A., Riordan, J. R., and Ford, R. C. (2005) Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Biochem. Soc. Trans. 33, 996–999.

    PubMed  CAS  Google Scholar 

  12. Rosenberg, M. F., Kamis, A. B., Aleksandrov, L. A., Ford, R. C., and Riordan, J. R. (2004) Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J. Biol. Chem. 279, 39051–39057.

    PubMed  CAS  Google Scholar 

  13. Zhang, L., Aleksandrov, L. A., Zhao, Z., Birtley, J. R., Riordan, J. R., and Ford, R. C. (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J. Struct. Biol. 167, 242–251.

    PubMed  CAS  Google Scholar 

  14. Lewis, H. A., Buchanan, S. G., Burley, S. K., Conners, K., Dickey, M., Dorwart, M., et al. (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J. 23, 282–293.

    PubMed  CAS  Google Scholar 

  15. Lewis, H. A., Zhao, X., Wang, C., Sauder, J. M., Rooney, I., Noland, B. W., et al. (2005) Impact of the F508del mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J. Biol. Chem. 280, 1346–1353.

    PubMed  CAS  Google Scholar 

  16. Thibodeau, P. H., Brautigam, C. A., Machius, M., and Thomas, P. J. (2005) Side chain and backbone contributions of Phe508 to CFTR folding. Nat. Struct. Mol. Biol. 12, 10–16.

    PubMed  CAS  Google Scholar 

  17. Atwell, S., Brouillette, C. G., Conners, K., Emtage, S., Gheyi, T., Guggino, W. B., et al. (2010) Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant. Protein Eng. Des. Sel. 23, 375–384.

    PubMed  CAS  Google Scholar 

  18. Zhao, X., Conners, K., Emtage, S., Lu, F., and Atwell, S. (2008) The crystal structure of the second Nucleotide Binding Domain (NBD2) of CFTR suggests NBD2 subdomain movements are involved in channel opening. Pediatr. Pulmonary 43, 205.

    Google Scholar 

  19. Kanelis, V., Hudson, R. P., Thibodeau, P. H., Thomas, P. J., and Forman-Kay, J. D. (2010) NMR evidence for differential phosphorylation-dependent interactions in WT and F508del-CFTR. EMBO J. 29, 263–277.

    PubMed  CAS  Google Scholar 

  20. Baker, J. M., Hudson, R. P., Kanelis, V., Choy, W. Y., Thibodeau, P. H., Thomas, P. J., et al. (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14, 738–745.

    PubMed  CAS  Google Scholar 

  21. Wehbi, H., Gasmi-Seabrook, G., Choi, M. Y., and Deber, C. M. (2008) Positional dependence of non-native polar mutations on folding of CFTR helical hairpins. Biochim. Biophys. Acta 1778, 79–87.

    PubMed  CAS  Google Scholar 

  22. Dahan, D., Evagelidis, A., Hanrahan, J. W., Hinkson, D. A., Jia, Y., Luo, J., et al. (2001) Regulation of the CFTR channel by phosphorylation. Pflugers Arch. 443(Suppl 1), S92–96.

    PubMed  CAS  Google Scholar 

  23. Smith, P. C., Karpowich, N., Millen, L., Moody, J. E., Rosen, J., Thomas, P. J., et al. (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149.

    PubMed  CAS  Google Scholar 

  24. Verdon, G., Albers, S. V., van Oosterwijk, N., Dijkstra, B. W., Driessen, A. J., and Thunnissen, A. M. (2003) Formation of the productive ATP-Mg2+-bound dimer of GlcV, an ABC-ATPase from Sulfolobus solfataricus. J. Mol. Biol. 334, 255–267.

    PubMed  CAS  Google Scholar 

  25. Zaitseva, J., Oswald, C., Jumpertz, T., Jenewein, S., Wiedenmann, A., Holland, I. B., et al. (2006) A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J. 25, 3432–3443.

    PubMed  CAS  Google Scholar 

  26. Wang, C., Karpowich, N., Hunt, J. F., Rance, M., and Palmer, A. G. (2004) Dynamics of ATP-binding cassette contribute to allosteric control, nucleotide binding and energy transduction in ABC transporters. J. Mol. Biol. 342, 525–537.

    PubMed  CAS  Google Scholar 

  27. Li, X., Romero, P., Rani, M., Dunker, A. K., and Obradovic, Z. (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform. Ser. Workshop Genome Inform. 10, 30–40.

    PubMed  CAS  Google Scholar 

  28. Vallurupalli, P., Hansen, D. F., and Kay, L. E. (2008) Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc. Natl. Acad. Sci. USA 105, 11766–11771.

    PubMed  CAS  Google Scholar 

  29. Cheung, J. C., Kim Chiaw, P., Pasyk, S., and Bear, C. E. (2008) Molecular basis for the ATPase activity of CFTR. Arch. Biochem. Biophys. 476, 95–100.

    PubMed  CAS  Google Scholar 

  30. Hwang, T. C., and Sheppard, D. N. (2009) Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation. J. Physiol. 587, 2151–2161.

    PubMed  CAS  Google Scholar 

  31. Eliezer, D. (2009) Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 19, 23–30.

    PubMed  CAS  Google Scholar 

  32. Mittag, T., and Forman-Kay, J. D. (2007) Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol. 17, 3–14.

    PubMed  CAS  Google Scholar 

  33. Levitt, M. H. (2001) Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley, Chichester.

    Google Scholar 

  34. Zhang, O., Kay, L. E., Olivier, J. P., and Forman-Kay, J. D. (1994) Backbone 1H and 15 N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR 4, 845–858.

    PubMed  CAS  Google Scholar 

  35. Mulder, F. A., Mittermaier, A., Hon, B., Dahlquist, F. W., and Kay, L. E. (2001) Studying excited states of proteins by NMR spectroscopy. Nat. Struct. Biol. 8, 932–935.

    PubMed  CAS  Google Scholar 

  36. Krishna, M. M., Hoang, L., Lin, Y., and Englander, S. W. (2004) Hydrogen exchange methods to study protein folding. Methods 34, 51–64.

    PubMed  CAS  Google Scholar 

  37. Hwang, T. L., van Zijl, P. C., and Mori, S. (1998) Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical exchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J. Biomol. NMR 11, 221–226.

    PubMed  CAS  Google Scholar 

  38. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293.

    PubMed  CAS  Google Scholar 

  39. Johnson, B. A., and Blevins, R. A. (1994) NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614.

    CAS  Google Scholar 

  40. Tugarinov, V., Hwang, P. M., and Kay, L. E. (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu. Rev. Biochem. 73, 107–146.

    PubMed  CAS  Google Scholar 

  41. Sprangers, R., and Kay, L. E. (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618–622.

    PubMed  CAS  Google Scholar 

  42. Sprangers, R., Velyvis, A., and Kay, L. E. (2007) Solution NMR of supramolecular complexes: providing new insights into function. Nat. Methods 4, 697–703.

    PubMed  CAS  Google Scholar 

  43. DeCarvalho, A. C., Gansheroff, L. J., and Teem, J. L. (2002) Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator F508del. J. Biol. Chem. 277, 35896–35905.

    PubMed  CAS  Google Scholar 

  44. Teem, J. L., Berger, H. A., Ostedgaard, L. S., Rich, D. P., Tsui, L. C., and Welsh, M. J. (1993) Identification of revertants for the cystic fibrosis F508del mutation using STE6-CFTR chimeras in yeast. Cell 73, 335–346.

    PubMed  CAS  Google Scholar 

  45. Teem, J. L., Carson, M. R., and Welsh, M. J. (1996) Mutation of R555 in CFTR-F508del enhances function and partially corrects defective processing. Recept. Channels 4, 63–72.

    PubMed  CAS  Google Scholar 

  46. Mulvihill, C. M., Rabeh, W. M., Di Bernardo, S., Bagdany, M., Du, K., and Lukacs, G. L. (2008) Characterization of wild-type and F508del NBD1 from CFTR with a single solubilization mutation. Pediatr. Pulmonol. 31(Suppl.), 205.

    Google Scholar 

  47. Golovanov, A. P., Hautbergue, G. M., Wilson, S. A., and Lian, L. Y. (2004) A simple method for improving protein solubility and long-term stability. J. Am. Chem. Soc. 126, 8933–8939.

    PubMed  CAS  Google Scholar 

  48. Tugarinov, V., Kanelis, V., and Kay, L. E. (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1, 749–754.

    PubMed  CAS  Google Scholar 

  49. Rosen, M. K., Gardner, K. H., Willis, R. C., Parris, W. E., Pawson, T., and Kay, L. E. (1996) Selective methyl group protonation of perdeuterated proteins. J. Mol. Biol. 263, 627–636.

    PubMed  CAS  Google Scholar 

  50. Gardner, K. H., and Kay, L. E. (1998) The use of 2H, 13C, 15 N multidimensional NMR to study the structure and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct. 27, 357–406.

    PubMed  CAS  Google Scholar 

  51. Kanelis, V., Forman-Kay, J. D., and Kay, L. E. (2001) Multidimensional NMR methods for protein structure determination. IUBMB Life 52, 291–302.

    PubMed  CAS  Google Scholar 

  52. Kay, L. E. (2005) NMR studies of protein structure and dynamics. J. Magn. Reson. 173, 193–207.

    PubMed  CAS  Google Scholar 

  53. Sattler, M., Schleucher, J., and Griesinger, C. (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. NMR Spect. 34, 93–158.

    CAS  Google Scholar 

  54. Foster, M. P., McElroy, C. A., and Amero, C. D. (2007) Solution NMR of large molecules and assemblies. Biochemistry (Mosc) 46, 331–340.

    CAS  Google Scholar 

  55. Grzesiek, S., and Sass, H. J. (2009) From biomolecular structure to functional understanding: new NMR developments narrow the gap. Curr. Opin. Struct. Biol. 19, 585–595.

    PubMed  CAS  Google Scholar 

  56. Baldwin, A. J., and Kay, L. E. (2009) NMR spectroscopy brings invisible protein states into focus. Nat. Chem. Biol. 5, 808–814.

    PubMed  CAS  Google Scholar 

  57. Richardson, J. M., Caspa, E., and Thomas, P. J. (2008) In vitro CFTR-NBD1-based folding assays for assessment of stabilizing ligands. Pediatr. Pulmonol. 31(Suppl.), 202.

    Google Scholar 

  58. Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371.

    PubMed  CAS  Google Scholar 

  59. Goto, N. K., and Kay, L. E. (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585–592.

    PubMed  CAS  Google Scholar 

  60. Wishart, D. S., and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363–392.

    PubMed  CAS  Google Scholar 

  61. Shen, Y., Delaglio, F., Cornilescu, G., and Bax, A. (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223.

    PubMed  CAS  Google Scholar 

  62. Robustelli, P., Cavalli, A., Dobson, C. M., Vendruscolo, M., and Salvatella, X. (2009) Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology. J. Phys. Chem. B 113, 7890–7896.

    PubMed  CAS  Google Scholar 

  63. Shen, Y., Lange, O., Delaglio, F., Rossi, P., Aramini, J. M., Liu, G., et al. (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA 105, 4685–4690.

    PubMed  CAS  Google Scholar 

  64. Cavalli, A., Salvatella, X., Dobson, C. M., and Vendruscolo, M. (2007) Protein structure determination from NMR chemical shifts. Proc. Natl. Acad. Sci. USA 104, 9615–9620.

    PubMed  CAS  Google Scholar 

  65. Lipsitz, R. S., and Tjandra, N. (2004) Residual dipolar couplings in NMR structure analysis. Annu. Rev. Biophys. Biomol. Struct. 33, 387–413.

    PubMed  CAS  Google Scholar 

  66. Nilges, M., Macias, M. J., O’Donoghue, S. I., and Oschkinat, H. (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J. Mol. Biol. 269, 408–422.

    PubMed  CAS  Google Scholar 

  67. Tjandra, N., and Bax, A. (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114.

    PubMed  CAS  Google Scholar 

  68. Tolman, J. R., Flanagan, J. M., Kennedy, M. A., and Prestegard, J. H. (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283.

    PubMed  CAS  Google Scholar 

  69. Hus, J. C., Marion, D., and Blackledge, M. (2001) Determination of protein backbone structure using only residual dipolar couplings. J. Am. Chem. Soc. 123, 1541–1542.

    PubMed  CAS  Google Scholar 

  70. Kontaxis, G., Delaglio, F., and Bax, A. (2005) Molecular fragment replacement approach to protein structure determination by chemical shift and dipolar homology database mining. Methods Enzymol. 394, 42–78.

    PubMed  CAS  Google Scholar 

  71. Skrynnikov, N. R., Goto, N. K., Yang, D., Choy, W. Y., Tolman, J. R., Mueller, G. A., et al. (2000) Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. J. Mol. Biol. 295, 1265–1273.

    PubMed  CAS  Google Scholar 

  72. Hollenstein, K., Frei, D. C., and Locher, K. P. (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446, 213–216.

    PubMed  CAS  Google Scholar 

  73. Aller, S. G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722.

    PubMed  CAS  Google Scholar 

  74. Dawson, R. J., and Locher, K. P. (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett. 581, 935–938.

    PubMed  CAS  Google Scholar 

  75. Ward, A., Reyes, C. L., Yu, J., Roth, C. B., and Chang, G. (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl. Acad. Sci. USA 104, 19005–19010.

    PubMed  CAS  Google Scholar 

  76. He, L., Aleksandrov, A. A., Serohijos, A. W., Hegedus, T., Aleksandrov, L. A., Cui, L., et al. (2008) Multiple membrane-cytoplasmic domain contacts in cftr mediate regulation of channel gating. J. Biol. Chem. 283, 26383–26390.

    PubMed  CAS  Google Scholar 

  77. Mendoza, J. L., and Thomas, P. J. (2007) Building an understanding of cystic fibrosis on the foundation of ABC transporter structures. J. Bioenerg. Biomembr. 39, 499–505.

    PubMed  CAS  Google Scholar 

  78. Serohijos, A. W., Hegedus, T., Aleksandrov, A. A., He, L., Cui, L., Dokholyan, N. V., et al. (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc. Natl. Acad. Sci. USA 105, 3256–3261.

    PubMed  CAS  Google Scholar 

  79. Wang, F., Zeltwanger, S., Hu, S., and Hwang, T. C. (2000) Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels. J. Physiol. 524(Pt 3), 637–648.

    PubMed  CAS  Google Scholar 

  80. Pellecchia, M., Bertini, I., Cowburn, D., Dalvit, C., Giralt, E., Jahnke, W., et al. (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat. Rev. Drug Discov 7, 738–745.

    Google Scholar 

  81. Takahashi, H., Nakanishi, T., Kami, K., Arata, Y., and Shimada, I. (2000) A novel NMR method for determining the interfaces of large protein-protein complexes. Nat. Struct. Biol. 7, 220–223.

    PubMed  CAS  Google Scholar 

  82. Berjanskii, M. V., and Wishart, D. S. (2008) Application of the random coil index to studying protein flexibility. J. Biomol. NMR 40, 31–48.

    PubMed  CAS  Google Scholar 

  83. Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., and Dunker, A. K. (2001) Sequence complexity of disordered protein. Proteins 42, 38–48.

    PubMed  CAS  Google Scholar 

  84. Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic, Z., et al. (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049.

    PubMed  CAS  Google Scholar 

  85. Wright, P. E., and Dyson, H. J. (2009) Linking folding and binding. Curr. Opin. Struct. Biol. 19, 31–38.

    PubMed  CAS  Google Scholar 

  86. Dosztanyi, Z., Chen, J., Dunker, A. K., Simon, I., and Tompa, P. (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J. Proteome Res. 5, 2985–2995.

    PubMed  CAS  Google Scholar 

  87. Mittag, T., Kay, L. E., and Forman-Kay, J. D. (2010) Protein dynamics and conformational disorder in molecular recognition. J. Mol. Recognit 23, 105–116.

    Google Scholar 

  88. Marsh, J. A., Singh, V. K., Jia, Z., and Forman-Kay, J. D. (2006) Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci. 15, 2795–2804.

    PubMed  CAS  Google Scholar 

  89. Wilkins, D. K., Grimshaw, S. B., Receveur, V., Dobson, C. M., Jones, J. A., and Smith, L. J. (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry (Mosc) 38, 16424–16431.

    CAS  Google Scholar 

  90. Uversky, V. N. (1993) Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry (Mosc) 32, 13288–13298.

    CAS  Google Scholar 

  91. Choy, W. Y., Mulder, F. A., Crowhurst, K. A., Muhandiram, D. R., Millett, I. S., Doniach, S., et al. (2002) Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. J. Mol. Biol. 316, 101–112.

    PubMed  CAS  Google Scholar 

  92. Damaschun, G., Damaschun, H., Gast, K., and Zirwer, D. (1998) Denatured states of yeast phosphoglycerate kinase. Biochemistry (Mosc) 63, 259–275.

    CAS  Google Scholar 

  93. Marsh, J. A., and Forman-Kay, J. D. (2010) Sequence determinants of compaction in intrinsically disordered proteins. Biophys. J. 98, 2383–2390.

    Google Scholar 

  94. Borg, M., Mittag, T., Pawson, T., Tyers, M., Forman-Kay, J. D., and Chan, H. S. (2007) Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity. Proc. Natl. Acad. Sci. USA 104, 9650–9655.

    PubMed  CAS  Google Scholar 

  95. Iwahara, J., Schwieters, C. D., and Clore, G. M. (2004) Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J. Am. Chem. Soc. 126, 5879–5896.

    PubMed  CAS  Google Scholar 

  96. Marsh, J. A., and Forman-Kay, J. D. (2009) Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints. J. Mol. Biol. 391, 359–374.

    PubMed  CAS  Google Scholar 

  97. Hegedus, T., Serohijos, A. W., Dokholyan, N. V., He, L., and Riordan, J. R. (2008) Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR. J. Mol. Biol. 378, 1052–1063.

    PubMed  CAS  Google Scholar 

  98. Mornon, J. P., Lehn, P., and Callebaut, I. (2009) Molecular models of the open and closed states of the whole human CFTR protein. Cell. Mol. Life Sci. 66, 3469–3486.

    PubMed  CAS  Google Scholar 

  99. Mittag, T., Marsh, J. A., Grishaev, A., Orlicky, S., Lin, H., Sicheri, F., et al. (2010) Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18, 494–506.

    PubMed  CAS  Google Scholar 

  100. Marsh, J. A., Dancheck, B., Ragusa, M. J., Allaire, M., Forman-Kay, J. D., and Peti, W. (2010) Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 18, 1094–1103.

    Google Scholar 

  101. Bruschweiler, R., Liao, X., and Wright, P. E. (1995) Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268, 886–889.

    PubMed  CAS  Google Scholar 

  102. Macauley, M. S., Errington, W. J., Scharpf, M., Mackereth, C. D., Blaszczak, A. G., Graves, B. J., et al. (2006) Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence. J. Biol. Chem. 281, 4164–4172.

    PubMed  CAS  Google Scholar 

  103. Marsh, J. A., Neale, C., Jack, F. E., Choy, W. Y., Lee, A. Y., Crowhurst, K. A., et al. (2007) Improved structural characterizations of the drkN SH3 domain unfolded state suggest a compact ensemble with native-like and non-native structure. J. Mol. Biol. 367, 1494–1510.

    PubMed  CAS  Google Scholar 

  104. Donaldson, L. W., Skrynnikov, N. R., Choy, W. Y., Muhandiram, D. R., Sarkar, B., Forman-Kay, J. D., et al. (2001) Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J. Am. Chem. Soc. 123, 9843–9847.

    PubMed  CAS  Google Scholar 

  105. Choy, W. Y., and Forman-Kay, J. D. (2001) Calculation of ensembles of structures representing the unfolded state of an SH3 domain. J. Mol. Biol. 308, 1011–1032.

    PubMed  CAS  Google Scholar 

  106. Lindorff-Larsen, K., Kristjansdottir, S., Teilum, K., Fieber, W., Dobson, C. M., Poulsen, F. M., et al. (2004) Determination of an ensemble of structures representing the denatured state of the bovine acyl-coenzyme a binding protein. J. Am. Chem. Soc. 126, 3291–3299.

    PubMed  CAS  Google Scholar 

  107. Jensen, M. R., Markwick, P. R., Meier, S., Griesinger, C., Zweckstetter, M., Grzesiek, S., et al. (2009) Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure 17, 1169–1185.

    PubMed  CAS  Google Scholar 

  108. Naren, A. P., Cormet-Boyaka, E., Fu, J., Villain, M., Blalock, J. E., Quick, M. W., et al. (1999) CFTR chloride channel regulation by an interdomain interaction. Science 286, 544–548.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voula Kanelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kanelis, V., Chong, P.A., Forman-Kay, J.D. (2011). NMR Spectroscopy to Study the Dynamics and Interactions of CFTR. In: Amaral, M., Kunzelmann, K. (eds) Cystic Fibrosis. Methods in Molecular Biology, vol 741. Humana Press. https://doi.org/10.1007/978-1-61779-117-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-117-8_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-116-1

  • Online ISBN: 978-1-61779-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics