Skip to main content

Understanding the Immunoglobulin Locus Specificity of Hypermutation

  • Protocol
  • First Online:
DNA Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 745))

Abstract

The immunoglobulin (Ig) genes of B cells are diversified at high rate by point mutations whereas the non-Ig genes of B cells accumulate no or significantly fewer mutations. Ig hypermutations are critical for the affinity maturation of antibodies for most of jawed vertebrates and also contribute to the primary Ig diversity repertoire formation in some species. How the hypermutation activity is specifically targeted to the Ig loci is a long-standing debate. Here we describe a new experimental approach to investigate the locus specificity of Ig hypermutation using the chicken B-cell line DT40. One feature is the use of a green fluorescent protein (GFP) gene as a mutation reporter. Some nucleotide changes produced by somatic hypermutation can cripple the GFP gene which leads to a decrease or loss of the green fluorescence. Therefore such changes can be easily quantified by fluorescence-activated cell sorting (FACS). Another advantage of this approach is the targeted integration of the mutation reporter into a defined chromosomal position. This system allowed us to identify a 10 kb sequence within the Ig light chain (IgL) locus, which is both necessary and sufficient to activate hypermutation in the neighboring reporter gene. We have called this sequence Diversification Activator (DIVAC) and postulated that similar cis-acting sequences exist in the heavy and light chain Ig loci of all jawed vertebrate species. Our experimental system promises further insight into the molecular mechanism of Ig hypermutation. For example, it may be possible to identify smaller functional motifs within DIVAC and address the role of putative transacting binding factors by gene knock-outs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonegawa, S. (1983) Somatic generation of antibody diversity. Nature 302, 575–581.

    Article  PubMed  CAS  Google Scholar 

  2. McKean, D., Huppi, K., Bell, M., Staudt, L., Gerhard, W., and Weigert, M. (1984) Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc Natl Acad Sci USA 81, 3180–3184.

    Article  PubMed  CAS  Google Scholar 

  3. Kocks, C., and Rajewsky, K. (1988) Stepwise intraclonal maturation of antibody affinity through somatic hypermutation. Proc Natl Acad Sci USA 85, 8206–8210.

    Article  PubMed  CAS  Google Scholar 

  4. Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T. (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563.

    Article  PubMed  CAS  Google Scholar 

  5. Peters, A., and Storb, U. (1996) Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65.

    Article  PubMed  CAS  Google Scholar 

  6. Di Noia, J.M., and Neuberger, M.S. (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76, 1–22.

    Article  PubMed  Google Scholar 

  7. Petersen-Mahrt, S.K., Harris, R.S., and Neuberger, M.S. (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103.

    Article  PubMed  CAS  Google Scholar 

  8. Sale, J.E., Calandrini, D.M., Takata, M., Takeda, S., and Neuberger, M.S. (2001) Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 412, 921–926.

    Article  PubMed  CAS  Google Scholar 

  9. Arakawa, H., Saribasak, H., and Buerstedde, J.M. (2004) Activation-induced cytidine deaminase initiates immunoglobulin gene conversion and hypermutation by a common intermediate. PLoS Biol 2, E179.

    Article  PubMed  Google Scholar 

  10. Di Noia, J.M., and Neuberger, M.S. (2002) Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48.

    Article  PubMed  Google Scholar 

  11. Saribasak, H., Saribasak, N.N., Ipek, F.M., Ellwart, J.W., Arakawa, H., and Buerstedde, J.M. (2006) Uracil DNA glycosylase disruption blocks Ig gene conversion and induces transition mutations. J Immunol 176, 365–371.

    PubMed  CAS  Google Scholar 

  12. Rada, C., Williams, G.T., Nilsen, H., Barnes, D.E., Lindahl, T., and Neuberger, M.S. (2002) Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 12, 1748–1755.

    Article  PubMed  CAS  Google Scholar 

  13. Shen, H.M., Peters, A., Baron, B., Zhu, X., and Storb, U. (1998) Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752.

    Article  PubMed  CAS  Google Scholar 

  14. Pasqualucci, L., Neumeister, P., Goossens, T., Nanjangud, G., Chaganti, R.S., Küppers, R., and Dalla-Favera, R. (2001) Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346.

    Article  PubMed  CAS  Google Scholar 

  15. Gopal, A.R., and Fugmann, S.D. (2008) AID-mediated diversification within the IgL locus of chicken DT40 cells is restricted to the transcribed IgL gene. Mol Immunol 45, 2062–2068.

    Article  PubMed  CAS  Google Scholar 

  16. Gordon, M.S., Kanegai, C.M., Doerr, J.R., and Wall, R. (2003) Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a). Proc Natl Acad Sci USA 100, 4126–4131.

    Article  PubMed  CAS  Google Scholar 

  17. Müschen, M., Re, D., Jungnickel, B., Diehl, V., Rajewsky, K., and Küppers, R. (2000) Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J Exp Med 192, 1833–1840.

    Article  PubMed  Google Scholar 

  18. Pasqualucci, L., Migliazza, A., Fracchiolla, N., William, C., Neri, A., Baldini, L., et al. (1998) BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA 95, 11816–11821.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, M., Duke, J.L., Richter, D.J., Vinuesa, C.G., Goodnow, C.C., Kleinstein, S.H., et al. (2008) Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845.

    Article  PubMed  CAS  Google Scholar 

  20. Storb, U., Peters, A., Klotz, E., Kim, N., Shen, H.M., Hackett, J., et al. (1998) Immunoglobulin transgenes as targets for somatic hypermutation. Int J Dev Biol 42, 977–982.

    PubMed  CAS  Google Scholar 

  21. Klix, N., Jolly, C.J., Davies, S.L., Brüggemann, M., Williams, G.T., and Neuberger, M.S. (1998) Multiple sequences from downstream of the J kappa cluster can combine to recruit somatic hypermutation to a heterologous, upstream mutation domain. Eur J Immunol 28, 317–326.

    Article  PubMed  CAS  Google Scholar 

  22. Yang, S.Y., and Schatz, D.G. (2007) Targeting of AID-mediated sequence diversification by cis-acting determinants. Adv Immunol 94, 109–125.

    Article  PubMed  CAS  Google Scholar 

  23. Blagodatski, A., Batrak, V., Schmidl, S., Schoetz, U., Caldwell, R.B., Arakawa, H., et al. (2009) A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet 5, e1000332.

    Article  PubMed  Google Scholar 

  24. Arakawa, H., Hauschild, J., and Buerstedde, J.M. (2002) Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306.

    Article  PubMed  CAS  Google Scholar 

  25. Buerstedde, J.M., and Takeda, S. (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67, 179–188.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AB was supported by the grant no. 02.740.11.5016 from the Russian Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Buerstedde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Batrak, V., Blagodatski, A., Buerstedde, JM. (2011). Understanding the Immunoglobulin Locus Specificity of Hypermutation. In: Tsubouchi, H. (eds) DNA Recombination. Methods in Molecular Biology, vol 745. Humana Press. https://doi.org/10.1007/978-1-61779-129-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-129-1_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-128-4

  • Online ISBN: 978-1-61779-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics