Skip to main content

Cell Biology of Homologous Recombination in Yeast

  • Protocol
  • First Online:
DNA Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 745))

Abstract

Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces cerevisiae using fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krogh, B. and Symington, L. (2004) Recombination proteins in yeast. Annu Rev Genet 38, 233–271.

    Article  PubMed  CAS  Google Scholar 

  2. Lisby, M. and Rothstein, R. (2004) DNA damage checkpoint and repair centers. Curr Opin Cell Biol 16, 328–334.

    Article  PubMed  CAS  Google Scholar 

  3. Lisby, M. and Rothstein, R. (2005) Localization of checkpoint and repair proteins in eukaryotes. Biochimie 87, 579–589.

    Article  PubMed  CAS  Google Scholar 

  4. Lisby, M. and Rothstein, R. (2009) Choreography of recombination proteins during the DNA damage response. DNA Repair (Amst) 8, 1068–1076.

    Article  CAS  Google Scholar 

  5. Sherman, F. Fink, G.R., and Hicks, J.B. (1986) Methods in yeast genetics (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory).

    Google Scholar 

  6. Moore, C.W., McKoy, J., Dardalhon, M., Davermann, D., Martinez, M., and Averbeck, D. (2000) DNA damage-inducible and RAD52-independent repair of DNA double-strand breaks in Saccharomyces cerevisiae. Genetics 154, 1085–1099.

    PubMed  CAS  Google Scholar 

  7. Thomas, B.J. and Rothstein, R. (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56, 619–630.

    Article  PubMed  CAS  Google Scholar 

  8. Zhao, X., Muller, E.G., and Rothstein, R. (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2, 329–340.

    Article  PubMed  CAS  Google Scholar 

  9. Erdeniz, N., Mortensen, U.H., and Rothstein, R. (1997) Cloning-free PCR-based allele replacement methods. Genome Res 7, 1174–1183.

    PubMed  CAS  Google Scholar 

  10. Torres-Rosell, J., Sunjevaric, I., De Piccoli, G., Sacher, M., Eckert-Boulet, N., Reid, R., Jentsch, S., Rothstein, R., Aragon, L., and Lisby, M. (2007) The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9, 923–931.

    Article  PubMed  CAS  Google Scholar 

  11. Reid, R., Lisby, M., and Rothstein, R. (2002) Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol 350, 258–277.

    Article  PubMed  CAS  Google Scholar 

  12. Lisby, M., Mortensen, U.H., and Rothstein, R. (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5, 572–577.

    Article  PubMed  CAS  Google Scholar 

  13. Jensen, R.E. and Herskowitz, I. (1984) Directionality and regulation of cassette substitution in yeast. Cold Spring Harb Symp Quant Biol 49, 97–104.

    PubMed  CAS  Google Scholar 

  14. Hoffman, C.S. and Winston, F. (1987) A ten-minute DNA preparation efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.

    Article  PubMed  CAS  Google Scholar 

  15. Gietz, D., St Jean, A., Woods, R.A., and Schiestl, R.H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.

    Article  PubMed  CAS  Google Scholar 

  16. Straight, A.F., Belmont, A.S., Robinett, C.C., and Murray, A.W. (1996) GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr Biol 6, 1599–1608.

    Article  PubMed  CAS  Google Scholar 

  17. Michaelis, C., Ciosk, R., and Nasmyth, K. (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45.

    Article  PubMed  CAS  Google Scholar 

  18. Lisby, M., Rothstein, R., and Mortensen, U.H. (2001) Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci USA 98, 8276–8282.

    Article  PubMed  CAS  Google Scholar 

  19. Lim, C.R., Kimata, Y., Oka, M., Nomaguchi, K., and Kohno, K. (1995) Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin NSP1. J Biochem (Tokyo) 118, 13–17.

    CAS  Google Scholar 

  20. Lisby, M., Barlow, J.H., Burgess, R.C., and Rothstein, R. (2004) Choreography of the DNA damage response; spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713.

    Article  PubMed  CAS  Google Scholar 

  21. Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., and Remington, S.J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.

    Article  PubMed  CAS  Google Scholar 

  22. Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y. (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99, 7877–7882.

    Article  PubMed  CAS  Google Scholar 

  23. Heim, R. and Tsien, R.Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6, 178–182.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The LacI-R197K mutant protein was engineered by Christian Müller. This work was supported by The Danish Agency for Science, Technology and Innovation (ML), the Villum Kann Rasmussen Foundation (ML), GM67055 (RR), and the Lundbeck Foundation (NEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lisby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eckert-Boulet, N., Rothstein, R., Lisby, M. (2011). Cell Biology of Homologous Recombination in Yeast. In: Tsubouchi, H. (eds) DNA Recombination. Methods in Molecular Biology, vol 745. Humana Press. https://doi.org/10.1007/978-1-61779-129-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-129-1_30

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-128-4

  • Online ISBN: 978-1-61779-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics