Skip to main content

Reversible His-Tagged Enzyme Immobilization on Functionalized Carbon Nanotubes as Nanoscale Biocatalyst

  • Protocol
  • First Online:
Nanoscale Biocatalysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 743))

Abstract

Common enzyme immobilization methods on nanomaterials (adsorption, covalent binding, crosslinking, encapsulation) often generate problems in enzyme leaching, 3D structure change and diffusion resistance. We show here a detailed site-specific enzyme immobilization method that overcomes the foresaid limitations. It is based on the specific interaction between His-tagged enzyme and single-walled carbon nanotubes modified with N α ,N α-bis(carboxymethyl)-l-lysine hydrate. This method does not require enzyme purification and the resulting nanoscale biocatalyst can maintain high enzyme activity and stability. The enzyme-loading capacity is also comparable with the reported immobilization capacity on carbon nanotubes by either covalent binding or adsorption. Furthermore, the immobilization is reversible for several cycles while maintaining high enzyme activity and the nanoscale biocatalyst can be regenerated easily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, P. (2006) Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17, 574–579.

    Article  CAS  Google Scholar 

  2. Asuri, P., Karajanagi, S. S., Dordick, J. S., and Kane, R. S. (2006) Directed assembly of carbon nanotubes at liquid-liquid interfaces: Nanoscale conveyors for interfacial biocatalysis. J. Am. Chem. Soc. 128, 1046–1047.

    Article  CAS  Google Scholar 

  3. Zhao, X., Jia, H., Kim, J., and Wang, P. (2009) Kinetic limitations of a bioelectrochemical electrode using carbon nanotube-attached glucose oxidase for biofuel cells. Biotechnol. Bioeng. 104, 1068–1074.

    Article  CAS  Google Scholar 

  4. Kim, M. I., Kim, J., Lee, J., Jia, H., Bin Na, H., Youn, J. K., Kwak, J. H., Dohnalkova, A., Grate, J. W., Wang, P., Hyeon, T., Park, H. G., and Chang, H. N. (2007) Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96, 210–218.

    Article  CAS  Google Scholar 

  5. Elgren, T. E., Zadvorny, O. A., Brecht, E., Douglas, T., Zorin, N. A., Maroney, M. J., and Peters, J. W. (2005) Immobilization of active hydrogenases by encapsulation in polymeric porous gels. Nano Lett. 5, 2085–2087.

    Article  CAS  Google Scholar 

  6. Zhu, Y., Kaskel, S., Shi, J., Wage, T., and van Pee, K. H. (2007) Immobilization of Trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chem. Mat. 19, 6408–6413.

    Article  CAS  Google Scholar 

  7. Asuri, P., Bale, S. S., Pangule, R. C., Shah, D. A., Kane, R. S., and Dordick, J. S. (2007) Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23, 12318–12321.

    Article  CAS  Google Scholar 

  8. Hudson, S., Cooney, J., and Magner, E. (2008) Proteins in mesoporous silicates. Angew. Chem. Int. Ed. 47, 8582–8594.

    Article  CAS  Google Scholar 

  9. Asuri, P., Karajanagi, S. S., Yang, H. C., Yim, T. J., Kane, R. S., and Dordick, J. S. (2006) Increasing protein stability through control of the nanoscale environment. Langmuir 22, 5833–5836.

    Article  CAS  Google Scholar 

  10. Yim, T. J., Liu, J. W., Lu, Y., Kane, R. S., and Dordick, J. S. (2005) Highly active and stable DNAzyme–carbon nanotube hybrids. J. Am. Chem. Soc. 127, 12200–12201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, L., Jiang, R. (2011). Reversible His-Tagged Enzyme Immobilization on Functionalized Carbon Nanotubes as Nanoscale Biocatalyst. In: Wang, P. (eds) Nanoscale Biocatalysis. Methods in Molecular Biology, vol 743. Humana Press. https://doi.org/10.1007/978-1-61779-132-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-132-1_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-131-4

  • Online ISBN: 978-1-61779-132-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics