Skip to main content

Use of Colloidal Silica-Beads for the Isolation of Cell-Surface Proteins for Mass Spectrometry-Based Proteomics

  • Protocol
  • First Online:
Immune Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 748))

Abstract

Chaney and Jacobson first introduced the colloidal silica-bead protocol for the coating of cellular plasma membranes in the early 1980s. Since then, this method has been successfully incorporated into a wide range of in vitro and in vivo applications for the isolation of cell-surface proteins. The principle is simple – cationic colloidal silica microbeads are introduced to a suspension or monolayer of cells in culture. Electrostatic interactions between the beads and the negatively charged plasma membrane, followed by cross-linking to the membrane with an anionic polymer, ensure attachment and maintain the native protein conformation. Cells are subsequently ruptured, and segregation of the resulting plasma membrane sheets from the remaining­ cell constituents is achieved by ultracentrifugation through density gradients. The resulting membrane-bead pellet is treated with various detergents or chaotropic agents (i.e., urea) to elute bound proteins. If proteomic profiling by mass spectrometry is desired, proteins are denatured, carbamidomethylated, and digested into peptides prior to chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kearney, P., Thibault, P. (1953) Bioinformatics meets proteomics – bridging the gap between mass spectrometry data analysis and cell biology. J Bioinform Comput Biol 1, 183–200

    Article  Google Scholar 

  2. Brakke, M. K. (1953) Zonal separations by density-gradient centrifugation. Arch Biochem Biophys 45, 275–90.

    Article  PubMed  CAS  Google Scholar 

  3. Dormeyer, W., van Hoof, D., Braam, S. R., Heck, A. J., Mummery, C. L., and Krijgsveld, J. (2008) Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J Proteome Res 7, 2936–51.

    Article  PubMed  CAS  Google Scholar 

  4. Lund, R., Leth-Larsen, R., Jensen, O. N., and Ditzel, H. J. (2009) Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. J Proteome Res 8, 3078–90.

    Article  PubMed  CAS  Google Scholar 

  5. McCarthy, F. M., Burgess, S. C., van den Berg, B. H., Koter, M. D., and Pharr, G. T. (2005) Differential detergent fractionation for non-electrophoretic eukaryote cell proteomics. J Proteome Res 4, 316–24.

    Article  PubMed  CAS  Google Scholar 

  6. McCarthy, F. M., Cooksey, A. M., and Burgess, S. C. (2009) Sequential detergent extraction prior to mass spectrometry analysis. Methods in molecular biology (Clifton, N.J) 528, 110–8.

    Google Scholar 

  7. Elortza, F., Nuhse, T. S., Foster, L. J., Stensballe, A., Peck, S. C., and Jensen, O. N. (2003) Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics 2, 1261–70.

    Article  PubMed  CAS  Google Scholar 

  8. Ghosh, D., Krokhin, O., Antonovici, M., Ens, W., Standing, K.G., Beavis, R.C., Wilkins, J.A. (2004) Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res 4, 841–50.

    Article  Google Scholar 

  9. Guo, L., Eisenman, J. R., Mahimkar, R. M., Peschon, J. J., Paxton, R. J., Black, R. A., and Johnson, R. S. (2002) A proteomic approach for the identification of cell-surface proteins shed by metalloproteases. Mol Cell Proteomics 1, 30–6.

    Article  PubMed  CAS  Google Scholar 

  10. Lawson, E. L., Clifton, J.G., Huang, F., Li, X., Hixson, D.C., Josic, D. (2006) Use of magnetic beads with immobilized monoclonal antibodies for isolation of highly pure plasma membranes. Electrophoresis 27, 2747–58.

    Article  PubMed  CAS  Google Scholar 

  11. Watarai, H., Hinohara, A., Nagafune, J., Nakayama, T., Taniguchi, M., and Yamaguchi, Y. (2005) Plasma membrane-focused proteomics: dramatic changes in surface expression during the maturation of human dendritic cells. Proteomics 5, 4001–11.

    Article  PubMed  CAS  Google Scholar 

  12. Elschenbroich, S., Kim, Y., Medin, J. A., and Kislinger, T. (2010) Isolation of cell surface proteins for mass spectrometry-based proteomics. Expert Rev Proteomics 7, 141–54.

    Article  PubMed  CAS  Google Scholar 

  13. McDonald, C. A., Yang, J. Y., Marathe, V., Yen, T. Y., and Macher, B. A. (2009) Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics 8, 287–301.

    PubMed  CAS  Google Scholar 

  14. Wollscheid, B., Bausch-Fluck, D., Henderson, C., O’Brien, R., Bibel, M., Schiess, R., Aebersold, R., and Watts, J. D. (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27, 378–86.

    Article  PubMed  CAS  Google Scholar 

  15. Elia, G. (2008) Biotinylation reagents for the study of cell surface proteins. Proteomics 8, 4012–24.

    Article  PubMed  CAS  Google Scholar 

  16. Rybak, J. N., Ettorre, A., Kaissling, B., Giavazzi, R., Neri, D., and Elia, G. (2005) In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat Methods 2, 291–8.

    Article  PubMed  CAS  Google Scholar 

  17. Conn, E. M., Madsen, M. A., Cravatt, B. F., Ruf, W., Deryugina, E. I., and Quigley, J. P. (2008) Cell surface proteomics identifies molecules functionally linked to tumor cell intravasation. J Biol Chem 283, 26518–27.

    Article  PubMed  CAS  Google Scholar 

  18. Nunomura, K., Nagano, K., Itagaki, C., Taoka, M., Okamura, N., Yamauchi, Y., Sugano, S., Takahashi, N., Izumi, T., and Isobe, T. (2005) Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and ­signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics 4, 1968–76.

    Article  PubMed  CAS  Google Scholar 

  19. Arjunan, S., Reinartz, M., Emde, B., Zanger, K., and Schrader, J. (2009) Limitations of the colloidal silica method in mapping the endothelial plasma membrane proteome of the mouse heart. Cell Biochem Biophys 53, 135–43.

    Article  PubMed  CAS  Google Scholar 

  20. Durr, E., Yu, J., Krasinska, K. M., Carver, L. A., Yates, J. R., Testa, J. E., Oh, P., and Schnitzer, J. E. (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22, 985–92.

    Article  PubMed  CAS  Google Scholar 

  21. Chaney, L. K., and Jacobson, B. S. (1983) Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. J Biol Chem 258, 10062–72.

    PubMed  CAS  Google Scholar 

  22. Mason, P. W., and Jacobson, B. S. (1985) Isolation of the dorsal, ventral and intracellular domains of HeLa cell plasma membranes following adhesion to a gelatin substrate. Biochim Biophys Acta 821, 264–76.

    Article  PubMed  CAS  Google Scholar 

  23. Rahbar, A. M., and Fenselau, C. (2004) Integration of Jacobson’s pellicle method into proteomic strategies for plasma membrane proteins. J Proteome Res 3, 1267–77.

    Article  PubMed  CAS  Google Scholar 

  24. Stolz, D. B., and Jacobson, B. S. (1992) Examination of transcellular membrane protein polarity of bovine aortic endothelial cells in vitro using the cationic colloidal silica microbead membrane-isolation procedure. J Cell Sci 103, 39–51.

    PubMed  CAS  Google Scholar 

  25. Sambuy, Y., and Rodriguez-Boulan, E. (1988) Isolation and characterization of the apical surface of polarized Madin-Darby canine kidney epithelial cells. Proc Natl Acad Sci U S A 85, 1529–33.

    Article  PubMed  CAS  Google Scholar 

  26. Stolz, D. B., Ross, M. A., Salem, H. M., Mars, W. M., Michalopoulos, G. K., and Enomoto, K. (1999) Cationic colloidal silica membrane perturbation as a means of examining changes at the sinusoidal surface during liver regeneration. Am J Pathol 155, 1487–98.

    Article  PubMed  CAS  Google Scholar 

  27. Rahbar, A. M., and Fenselau, C. (2005) Unbiased examination of changes in plasma membrane proteins in drug resistant cancer cells. J Proteome Res 4, 2148–53.

    Article  PubMed  CAS  Google Scholar 

  28. Hor, S., Ziv, T., Admon, A., and Lehner, P. J. (2009) Stable isotope labeling by amino acids in cell culture and differential plasma membrane proteome quantitation identify new substrates for the MARCH9 transmembrane E3 ligase. Mol Cell Proteomics 8, 1959–71.

    Article  PubMed  CAS  Google Scholar 

  29. Oh, P., Li, Y., Yu, J., Durr, E., Krasinska, K. M., Carver, L. A., Testa, J. E., and Schnitzer, J. E. (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629–35.

    Article  PubMed  CAS  Google Scholar 

  30. Li, X., Jin, Q., Cao, J., Xie, C., Cao, R., Liu, Z., Xiong, J., Li, J., Yang, X., Chen, P., and Liang, S. (2009) Evaluation of two cell surface modification methods for proteomic analysis of plasma membrane from isolated mouse hepatocytes. Biochim Biophys Acta 1794, 32–41.

    Article  PubMed  CAS  Google Scholar 

  31. Li, X., Xie, C., Cao, J., He, Q., Cao, R., Lin, Y., Jin, Q., Chen, P., Wang, X., and Liang, S. (2009) An in vivo membrane density perturbation strategy for identification of liver sinusoidal­ surface proteome accessible from the vasculature. J Proteome Res 8, 123–32.

    Article  PubMed  CAS  Google Scholar 

  32. Bergeron, J. J., Au, C. E., Desjardins, M., McPherson, P. S., and Nilsson, T. (2010) Cell biology through proteomics--ad astra per alia porci. Trends Cell Biol 20, 337–45.

    Article  PubMed  CAS  Google Scholar 

  33. Elschenbroich, S., Ignatchenko, V., Sharma, P., Schmitt-Ulms, G., Gramolini, A. O., and Kislinger, T. (2009) Peptide separations by ­on-line MudPIT compared to isoelectric ­focusing in an off-gel format: application to a ­membrane-enriched fraction from C2C12 mouse skeletal muscle cells. J Proteome Res 8, 4860–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kislinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kim, Y., Elschenbroich, S., Sharma, P., Sepiashvili, L., Gramolini, A.O., Kislinger, T. (2011). Use of Colloidal Silica-Beads for the Isolation of Cell-Surface Proteins for Mass Spectrometry-Based Proteomics. In: Rast, J., Booth, J. (eds) Immune Receptors. Methods in Molecular Biology, vol 748. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-139-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-139-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-138-3

  • Online ISBN: 978-1-61779-139-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics