Skip to main content

Isolation of Focal Adhesion Proteins for Biochemical and Proteomic Analysis

  • Protocol
  • First Online:
Integrin and Cell Adhesion Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 757))

Abstract

Focal adhesions (FAs) are discrete plasma membrane-associated adhesive organelles that play dual roles in cell force transduction and signaling. FAs consist of clustered transmembrane heterodimeric integrin extracellular matrix (ECM) receptors and a large number of cytoplasmic proteins that collectively form thin plaques linking the ECM to actin filament bundles of the cytoskeleton. FAs are complex organelles that can change their composition in response to biochemical or mechanical cues. These compositional differences may underlie the ability of FAs to mediate an array of important cell functions including adhesion, signaling, force transduction, and regulation of the cytoskeleton. These functions contribute to the physiological processes of the immune response, development, and differentiation. However, linking FA composition to FA function has been difficult since there has been no method to isolate intact FAs reproducibly and determine their composition. We report here a new method for isolating FA structures in cultured cells distinct from cytoplasmic, nuclear, and internal membranous organellar components of the cell. We provide protocols for validation of the fractionation by immunofluorescence and immunoblotting, procedures for preparing the isolated FAs for mass spectrometric proteomic analysis, tips on data interpretation and analysis, and an approach for comparing FA composition in cells in which small GTPase signaling is perturbed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bershadsky A.D., Balaban N.Q., and Geiger B. (2003). Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695.

    Article  PubMed  CAS  Google Scholar 

  2. Burridge K., Fath K., Kelly T., Nuckolls G., and Turner C. (1988). Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4, 487–525.

    Article  PubMed  CAS  Google Scholar 

  3. Hynes R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687.

    Article  PubMed  CAS  Google Scholar 

  4. Discher D.E., Janmey P., and Wang Y.L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143.

    Article  PubMed  CAS  Google Scholar 

  5. Lauffenburger D.A. and Horwitz A.F. (1996). Cell migration: a physically integrated molecular process. Cell 84, 359–369.

    Article  PubMed  CAS  Google Scholar 

  6. Zamir E. and Geiger B. (2001). Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590.

    PubMed  CAS  Google Scholar 

  7. Zaidel-Bar R., Itzkovitz S., Ma’ayan A., Iyengar R., and Geiger B. (2007). Functional atlas of the integrin adhesome. Nat. Cell Biol. 9, 858–867.

    Article  PubMed  CAS  Google Scholar 

  8. Katoh K., Kano Y., Masuda M., Onishi H., and Fujiwara K. (1998). Isolation and contraction of the stress fiber. Mol. Biol. Cell 9, 1919–1938.

    PubMed  CAS  Google Scholar 

  9. Brown M.C. and Turner C.E. (2004). Paxillin: adapting to change. Physiol. Rev. 84, 1315–1339.

    Article  PubMed  CAS  Google Scholar 

  10. Murphy, D.B. (2001). Fundamentals of light microscopy and electronic imaging. pp. 85–91. Wiley-Liss, New York.

    Google Scholar 

  11. Han X., Aslanian A., and Yates J.R., III (2008). Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12, 483–490.

    Article  PubMed  CAS  Google Scholar 

  12. Washburn M.P., Wolters D., and Yates J.R., III (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.

    Article  PubMed  CAS  Google Scholar 

  13. Bern M., Goldberg D., McDonald W.H., and Yates J.R., III (2004). Automatic quality assessment of peptide tandem mass spectra. Bioinformatics. 20, s49–s54.

    Article  Google Scholar 

  14. Eng J.K., McCormack A.L., and Yates J.R., III (94 A.D.). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989.

    Google Scholar 

  15. Peng J., Elias J.E., Thoreen C.C., Licklider L.J., and Gygi S.P. (2003). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome. Res. 2, 43–50.

    Article  PubMed  CAS  Google Scholar 

  16. Peng J., Schwartz D., Elias J.E., Thoreen C.C., Cheng D., Marsischky G., Roelofs J., Finley D., and Gygi S.P. (2003). A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926.

    Article  PubMed  CAS  Google Scholar 

  17. Sadygov R.G., Eng J., Durr E., Saraf A., McDonald H., MacCoss M.J., and Yates J.R., III (2002). Code developments to improve the efficiency of automated MS/MS spectra interpretation. J. Proteome. Res. 1, 211–215.

    Article  PubMed  CAS  Google Scholar 

  18. Chen E.I., Hewel J., Krueger J.S., Tiraby C., Weber M.R., Kralli A., Becker K., Yates J.R., III, and Felding-Habermann B. (2007). Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res. 67, 1472–1486.

    Article  PubMed  CAS  Google Scholar 

  19. Tabb D.L., McDonald W.H., and Yates J.R., III (2002). DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome. Res. 1, 21–26.

    Article  PubMed  CAS  Google Scholar 

  20. Liu H., Sadygov R.G., and Yates J.R., III (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201.

    Article  PubMed  CAS  Google Scholar 

  21. Etienne-Manneville S. and Hall A. (2002). Rho GTPases in cell biology. Nature 420, 629–635.

    Article  PubMed  CAS  Google Scholar 

  22. Paoletti A.C., Parmely T.J., Tomomori-Sato C., Sato S., Zhu D., Conaway R.C., Conaway J.W., Florens L., and Washburn M.P. (2006). Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc. Natl. Acad. Sci. USA 103, 18928–18933.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare M. Waterman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kuo, JC., Han, X., Yates, J.R., Waterman, C.M. (2011). Isolation of Focal Adhesion Proteins for Biochemical and Proteomic Analysis. In: Shimaoka, M. (eds) Integrin and Cell Adhesion Molecules. Methods in Molecular Biology, vol 757. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-166-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-166-6_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-165-9

  • Online ISBN: 978-1-61779-166-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics