Skip to main content

In Silico Searching for Disease-Associated Functional DNA Variants

  • Protocol
  • First Online:
In Silico Tools for Gene Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 760))

Abstract

Experimental analyses of disease-associated DNA variants have provided significant insights into the functional implications of sequence variation. However, such experiment-based approaches for identifying functional DNA variants from a pool with a large number of neutral variants are challenging. Computational biology has the opportunity to play an important role in the identification of functional DNA variants in large-scale genotyping studies, ultimately yielding new drug targets and biomarkers. This chapter outlines in silico methods to predict disease-associated functional DNA variants so that the number of DNA variants screened for association with disease can be reduced to those that are most likely to alter gene function. To explore possible relationships between genetic mutations and phenotypic variation, different computational methods like Sorting Intolerant from Tolerant (SIFT, an evolutionary-based approach), Polymorphism Phenotyping (PolyPhen, a structure-based approach) and PupaSuite are discussed for prioritization of high-risk DNA variants. The PupaSuite tool aims to predict the phenotypic effect of DNA variants on the structure and function of the affected protein as well as the effect of variants in the non-coding regions of the same genes. To further investigate the possible causes of disease at the molecular level, deleterious nonsynonymous variants can be mapped to 3D protein structures. An analysis of solvent accessibility and secondary structure can also be performed to understand the impact of a mutation on protein function and stability. This chapter demonstrates a ‘real-world’ application of some existing bioinformatics tools for DNA variant analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander, E. S., Linton, L. M., Birren, B. et al. (2001) Initial sequencing and analysis of human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  2. Hinds, D. A., Stuve, L. L., Nilsen, G. B. et al. (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079.

    Article  PubMed  CAS  Google Scholar 

  3. The International HapMap Project (2003) The International HapMap Consortium. Nature 426, 789–796.

    Article  Google Scholar 

  4. Pharoah, P. D., Dunning, A. M., Ponder, B. A., et al. (2004) Association studies for cancer-susceptibility genetic variants. Nat Rev Cancer 4, 850–860.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson, G. C., Esposito, L., Barratt, B. J., et al. (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29, 233–237.

    Article  PubMed  CAS  Google Scholar 

  6. Ferrer-Costa, C., Orozco, M., de la Cruz, X. (2005) Use of bioinformatics tools for the annotation of disease-associated mutations in animal models. Proteins 61, 878–887.

    Article  PubMed  CAS  Google Scholar 

  7. Smith, E. P., Boyd, J., Frank, G. R. et al. (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331, 1056–1061.

    Article  PubMed  CAS  Google Scholar 

  8. Jaruzelska, J., Abadie, V., Aubenton-Carafa, Y., et al. (1995) In vitro splicing deficiency induced by a C to T mutation at position-3 in the intron 10 acceptor site of the phenylalanine hydroxylase gene in a patient with phenylketonuria. J Biol Chem 270, 20370–20375.

    Article  PubMed  CAS  Google Scholar 

  9. Proia, R. L., Neufeld, E. F. (1982) Synthesis of betahexosaminidase in cell free translation and in intact fibroblasts: an insoluble precursor alpha chain in a rare form of Tay-Sachs disease. Proc Natl Acad Sci 79, 6360–6364.

    Article  PubMed  CAS  Google Scholar 

  10. Prokunina, L., Alarcon-Riquelme, M. E. (2002) Regulatory SNPs in complex diseases their identification and functional validation. Expert Rev Mol Med 6, 1–15.

    Google Scholar 

  11. Cartegni, L., Krainer, A. R. (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nature Genet 30, 377–384.

    Article  PubMed  CAS  Google Scholar 

  12. Richard, J. D., Patricia, B. M., Mark, J. C., et al. (2006) Predicting deleterious nsSNPs: an analysis of sequence and structural attributes. BMC Bioinformatics 7, 217.

    Article  Google Scholar 

  13. Xi, T., Jones, I. M., Mohrenweiser, H. W. (2004) Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 83, 970–979.

    Article  PubMed  CAS  Google Scholar 

  14. Melissa, M., Johnson, Houck, J., et al. (2005) Screening for deleterious nonsynonymous single-nucleotide polymorphisms in genes involved in steroid hormone metabolism and response. Cancer Epidemiol Biomarkers Prev 14, 1326–1329.

    Article  Google Scholar 

  15. Chen, H., Zhou, H. X. (2005) Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Res 33, 3193–3199.

    Article  PubMed  CAS  Google Scholar 

  16. The Omim database [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM].

  17. Huret, J. L., Dessen, P., Bernheim, A. (2003) Atlas of genetics and cytogenetics in oncology and haematology. Nucleic Acids Res 31, 272–274.

    Article  PubMed  CAS  Google Scholar 

  18. Fredman, D., Munns, G., Rios, D., et al. (2004) HGVbase: a curated resource describing human DNA variation and phenotype relationships. Nucleic Acids Res 32, 516–519.

    Article  Google Scholar 

  19. Smigielski, E. M., Sirotkin, K., Ward, M., et al. (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28, 352–355.

    Article  PubMed  CAS  Google Scholar 

  20. Ng, P. C., Henikoff, S. (2001) Predicting Deleterious Amino Acid Substitutions. Genome Res 11, 863–874.

    Article  PubMed  CAS  Google Scholar 

  21. Ramensky, V., Pork, P., Sunyaev, S. (2002) Human no n-synonymous SNPs: server and survey. Nucleic Acids Res 30, 3894–3900.

    Article  PubMed  CAS  Google Scholar 

  22. Reumers, J., Conde, L., Medina, I., et al. (2008) Joint annotation of coding and noncoding single nucleotide polymorphisms and mutations in the SNP effect and PupaSuite databases. Nucleic Acids Res 36, D825–D829.

    Article  PubMed  CAS  Google Scholar 

  23. Cavallo, A., Martin, A. C. (2005) Mapping SNPs to protein sequence and structure data. Bioinformatics 8, 443–1450.

    Google Scholar 

  24. Lindahl, E., Azuara, C., Koehl, P. et al. (2006) NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res 34, W52–W56.

    Article  PubMed  CAS  Google Scholar 

  25. Delarue, M., Dumas, P. (2004) On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci 101, 6957–6962.

    Article  PubMed  CAS  Google Scholar 

  26. Ahmad, S., Gromiha, M., Fawareh, H. et al. (2004) ASA view, solvent accessibility graphics for proteins. BMC Bioinformatics 51, 51.

    Article  Google Scholar 

  27. Kabsch, W., Sander, C. (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

    Article  PubMed  CAS  Google Scholar 

  28. Frederic, M. Y., Lalande, M., Boileau, C. et al. (2009) UMD-predictor, a new prediction tool for nucleotide substitution pathogenicity – application to four genes: FBN1, FBN2, TGFBR1, and TGFBR2. Hum Mutat 30, 952–959.

    Article  PubMed  CAS  Google Scholar 

  29. Rajasekaran, R., Sudandiradoss, C., George Priya Doss, C. et al. (2007) Identification and in silico analysis of functional SNPs of the BRCA1 gene. Genomics 90, 447–452.

    Article  PubMed  CAS  Google Scholar 

  30. George Priya Doss, C., Sudandiradoss, C., Rajasekaran, R. et al. (2008) Identification and structural comparison of deleterious mutations in nsSNPs of ABL1 gene in chronic myeloid leukemia: A Bio-informatics study. J Biomed Info 41, 607–612.

    Article  CAS  Google Scholar 

  31. George Priya Doss, C., Sethumadhavan, R. (2009) Investigation on the role of nsSNPs in HNPCC genes-A Bioinformatics approach. BMC J Biomed Sci 16(1), 42.

    Google Scholar 

  32. George Priya Doss, C., Sudandiradoss, C., Rajasekaran, R. et al. (2008) Application of computational algorithm tools to identify functional SNPs. Funct Integrat Genomics 8, 309–316.

    Article  CAS  Google Scholar 

  33. George Priya Doss, C., Rajasekaran, R., Sudandiradoss, C. et al. (2008) A novel computational and structural analysis of nsSNPs in CFTR gene. Genomic Med 2, 23–32.

    Article  PubMed  CAS  Google Scholar 

  34. George Priya Doss, C., Sethumadhavan, R. (2009) Impact of Single Nucleotide Polymorphisms in HBB gene causing Haemoglobinopathies: in silico analysis. New Biotechnol 25, 214–219.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Management of Vellore Institute of Technology for providing the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao Sethumadhavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sethumadhavan, R., Doss, C.G.P., Rajasekaran, R. (2011). In Silico Searching for Disease-Associated Functional DNA Variants. In: Yu, B., Hinchcliffe, M. (eds) In Silico Tools for Gene Discovery. Methods in Molecular Biology, vol 760. Humana Press. https://doi.org/10.1007/978-1-61779-176-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-176-5_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-175-8

  • Online ISBN: 978-1-61779-176-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics