Skip to main content

Microarray-Based Genetic Footprinting Strategy to Identify Strain Improvement Genes after Competitive Selection of Transposon Libraries

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

Successful strain engineering involves perturbing key nodes within the cellular network. How the ­network’s connectivity affects the phenotype of interest and the ideal nodes to modulate, however, are frequently not readily apparent. To guide the generation of a list of candidate nodes for detailed investigation, designers often examine the behavior of a representative set of strains, such as a library of transposon insertion mutants, in the environment of interest. Here, we first present design principles for creating a maximally informative competitive selection. Then, we describe how to globally quantify the change in distribution of strains within a transposon library in response to a competitive selection by amplifying the DNA adjacent to the transposons and hybridizing it to a microarray. Finally, we detail strategies for analyzing the resulting hybridization data to identify genes and pathways that contribute both negatively and positively to fitness in the desired environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Girgis H. S., Hottes A. K., and Tavazoie S. (2009) Genetic architecture of intrinsic antibiotic susceptibility. PLoS One 4, e5629.

    Google Scholar 

  2. Goodarzi H., Bennett B. D., Amini S., Reaves M. L., Hottes A. K., Rabinowitz J. D., and Tavazoie, S. (2010) Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli. Mol. Syst. Biol. 6, 378.

    Google Scholar 

  3. Wang H. H., Isaacs F. J., Carr P. A., Sun Z. Z., Xu G., Forest C. R., and Church G. M. (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898.

    Google Scholar 

  4. Akerley B. J., Rubin E. J., Novick V. L., Amaya K., Judson N., and Mekalanos J. J. (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. U. S. A. 99, 966–971.

    Google Scholar 

  5. Dziva F., van Diemen P. M., Stevens M. P., Smith A. J., and Wallis T. S. (2004) Identification of Escherichia coli O157 : H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150, 3631–3645.

    Google Scholar 

  6. Gonzalez M. D., Lichtensteiger C. A., and Vimr E. R. (2001) Adaptation of signature-tagged mutagenesis to Escherichia coli K1 and the infant-rat model of invasive disease. FEMS Microbiol. Lett. 198, 125–128.

    Google Scholar 

  7. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C., Levy R., Chun-Rong L., Guenthner D., Bovee D., Olson M. V., and Manoil C. (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A. 100, 14339–14344.

    Google Scholar 

  8. Salama N. R., Shepherd B., and Falkow S. (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J. Bacteriol. 186, 7926–7935.

    Google Scholar 

  9. Badarinarayana V., Estep P. W., 3rd, Shendure J., Edwards J., Tavazoie S., Lam F., and Church G. M. (2001) Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19, 1060–1065.

    Google Scholar 

  10. Girgis H. S., Liu Y., Ryu W. S., and Tavazoie S. (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet. 3, 1644–1660.

    Google Scholar 

  11. Winterberg K. M., and Reznikoff W. S. (2007) Screening transposon mutant libraries using full-genome oligonucleotide microarrays. Methods Enzymol. 421, 110–125.

    Google Scholar 

  12. Baldwin D. N., and Salama N. R. (2007) Using genomic microarrays to study insertional/transposon mutant libraries. Methods Enzymol. 421, 90–110.

    Google Scholar 

  13. Do J. H., and Choi D. K. (2006) Normalization of microarray data: single-labeled and dual-labeled arrays. Mol. Cells. 22, 254–261.

    Google Scholar 

  14. Speed T., and Zhao H. (2009) Microarrays. Stat. Methods Med. Res. 18, 531–532.

    Google Scholar 

  15. Steinhoff C., and Vingron M. (2006) Normalization and quantification of differential expression in gene expression microarrays. Brief Bioinform. 7, 166–177.

    Google Scholar 

  16. Tusher V. G., Tibshirani R., and Chu G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U. S. A. 98, 5116–5121.

    Google Scholar 

  17. Goodarzi H., Elemento O., and Tavazoie S. (2009) Revealing global regulatory perturbations across human cancers. Mol. Cell. 36, 900–911.

    Google Scholar 

  18. Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., Davis A. P., Dolinski K., Dwight S. S., Eppig J. T., Harris M. A., Hill D. P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J. C., Richardson J. E., Ringwald M., Rubin G. M., and Sherlock G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29.

    Google Scholar 

  19. Amini S., Goodarzi H., and Tavazoie S. (2009) Genetic dissection of an exogenously induced biofilm in laboratory and clinical isolates of E. coli. PLoS Pathog. 5, e1000432.

    Google Scholar 

  20. Cooper S., and Helmstetter C. E. (1968) Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 31, 519–540.

    Google Scholar 

  21. Vora T., Hottes A. K., and Tavazoie S. (2009) Protein occupancy landscape of a bacterial genome. Mol. Cell. 35, 247–253.

    Google Scholar 

  22. Goodarzi H., Hottes A. K., and Tavazoie S. (2009) Global discovery of adaptive mutations. Nat. Methods 6, 581–583.

    Google Scholar 

  23. Hubbell E., Liu W. M., and Mei R. (2002) Robust estimators for expression analysis. Bioinformatics 18, 1585–1592.

    Google Scholar 

  24. Liu W. M., Mei R., Di X., Ryder T. B., Hubbell E., Dee S., Webster T. A., Harrington C. A., Ho M. H., Baid J., and Smeekens S. P. (2002) Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18, 1593–1599.

    Google Scholar 

  25. Affymetrix. (2002) Statistical Algorithms Description Documenthttp://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf Accessed June 22, 2010

Download references

Acknowledgments

We are grateful to Hany Girgis for developing and optimizing many of the techniques described here and to Hani Goodarzi for developing iPAGE. Work in the Tavazoie lab was supported by grants from NSF (CAREER), DARPA (BIOS), NIGMS (P50 GM071508), and the NIH Director’s Pioneer Award (1DP10D 003787-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Tavazoie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hottes, A.K., Tavazoie, S. (2011). Microarray-Based Genetic Footprinting Strategy to Identify Strain Improvement Genes after Competitive Selection of Transposon Libraries. In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics