Skip to main content

The Proprotein Convertases, 20 Years Later

  • Protocol
  • First Online:
Proprotein Convertases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 768))

Abstract

The proprotein convertases (PCs) are secretory mammalian serine proteinases related to bacterial subtilisin-like enzymes. The family of PCs comprises nine members, PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9 (Fig. 3.1). While the first seven PCs cleave after single or paired basic residues, the last two cleave at non-basic residues and the last one PCSK9 only cleaves one substrate, itself, for its activation. The targets and substrates of these convertases are very varied covering many aspects of cellular biology and communication. While it took more than 22 years to begin to identify the first member in 1989–1990, in less than 14 years they were all characterized. So where are we 20 years later in 2011? We have now reached a level of maturity needed to begin to unravel the mechanisms behind the complex physiological functions of these PCs both in health and disease states. We are still far away from comprehensively understanding the various ramifications of their roles and to identify their physiological substrates unequivocally. How do these enzymes function in vivo? Are there other partners to be identified that would modulate their activity and/or cellular localization? Would non-toxic inhibitors/silencers of some PCs provide alternative therapies to control some pathologies and improve human health? Are there human SNPs or mutations in these PCs that correlate with disease, and can these help define the finesses of their functions and/or cellular sorting? The more we know about a given field, the more questions will arise, until we are convinced that we have cornered the important angles. And yet the future may well reserve for us many surprises that may allow new leaps in our understanding of the fascinating biology of these phylogenetically ancient eukaryotic proteases (Fig. 3.2) implicated in health and disease, which traffic through the cells via multiple sorting pathways (Fig. 3.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gumbiner, B., and Kelly, R. B. (1982) Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells Cell 28, 51–9.

    PubMed  CAS  Google Scholar 

  2. Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984) Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor Cell 37, 1075–89.

    PubMed  CAS  Google Scholar 

  3. Fuller, R. S., Sterne, R. E., and Thorner, J. (1988) Enzymes required for yeast prohormone processing Annu Rev Physiol 50, 345–62.

    PubMed  CAS  Google Scholar 

  4. Mizuno, K., Nakamura, T., Ohshima, T., Tanaka, S., and Matsuo, H. (1988) Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases Biochem Biophys Res Commun 156, 246–54.

    PubMed  CAS  Google Scholar 

  5. Seidah, N. G., Gaspar, L., Mion, P., Marcinkiewicz, M., Mbikay, M., and Chrétien, M. (1990) cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: Tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases DNA Cell Biol 9, 789.

    PubMed  CAS  Google Scholar 

  6. Thomas, G., Thorne, B. A., Thomas, L., Allen, R. G., Hruby, D. E., Fuller, R. et al. (1988) Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells Science 241, 226–30.

    PubMed  CAS  Google Scholar 

  7. Bourbonnais, Y., Germain, D., Ash, J., and Thomas, D. Y. (1994) Cleavage of prosomatostatins by the yeast Yap3 and Kex2 endoprotease Biochimie 76, 226–33.

    PubMed  CAS  Google Scholar 

  8. Bathurst, I. C., Brennan, S. O., Carrell, R. W., Cousens, L. S., Brake, A. J., and Barr, P. J. (1987) Yeast KEX2 protease has the properties of a human proalbumin converting enzyme Science 235, 348–50.

    PubMed  CAS  Google Scholar 

  9. Roebroek, A. J., Schalken, J. A., Bussemakers, M. J., van Heerikhuizen, H., Onnekink, C., Debruyne, F. M. et al. (1986) Characterization of human c-fes/fps reveals a new transcription unit (fur) in the immediately upstream region of the proto-oncogene Mol Biol Rep 11, 117–25.

    PubMed  CAS  Google Scholar 

  10. van den Ouweland, A. M., Van Groningen, J. J., Roebroek, A. J., Onnekink, C., and Van de Ven, W. J. (1989) Nucleotide sequence analysis of the human fur gene Nucleic Acids Res 17, 7101–2.

    PubMed  Google Scholar 

  11. Van de Ven, W. J., Voorberg, J., Fontijn, R., Pannekoek, H., van den Ouweland, A. M., van Duijnhoven, H. L. et al. (1990) Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes Mol Biol Rep 14, 265–75.

    PubMed  Google Scholar 

  12. Nakayama, K. (1997) Furin: A mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins Biochem J 327(Pt 3), 625–35.

    PubMed  CAS  Google Scholar 

  13. Steiner, D. F. (1998) The proprotein convertases Curr Opin Chem Biol 2, 31–9.

    PubMed  CAS  Google Scholar 

  14. Seidah, N. G., and Chrétien, M. (1999) Proprotein and prohormone convertases: A family of subtilases generating diverse bioactive polypeptides Brain Res 848, 45–62.

    PubMed  CAS  Google Scholar 

  15. Thomas, G. (2002) Furin at the cutting edge: From protein traffic to embryogenesis and disease Nat Rev Mol Cell Biol 3, 753–66.

    PubMed  CAS  Google Scholar 

  16. Seidah, N. G., Mayer, G., Zaid, A., Rousselet, E., Nassoury, N., Poirier, S. et al. (2008) The activation and physiological functions of the proprotein convertases Int J Biochem Cell Biol 40, 1111–25.

    PubMed  CAS  Google Scholar 

  17. Henrich, S., Cameron, A., Bourenkov, G. P., Kiefersauer, R., Huber, R., Lindberg, I. et al. (2003) The crystal structure of the proprotein processing proteinase furin explains its stringent specificity Nat Struct Biol 10, 520–6.

    PubMed  CAS  Google Scholar 

  18. Benjannet, S., Rhainds, D., Hamelin, J., Nassoury, N., and Seidah, N. G. (2006) The proprotein convertase PCSK9 is inactivated by furin and/or PC5/6A: Functional consequences of natural mutations and post-translational modifications J Biol Chem 281, 30561–72.

    PubMed  CAS  Google Scholar 

  19. Rawling, J., Garcia-Barreno, B., and Melero, J. A. (2008) Insertion of the two cleavage sites of the respiratory syncytial virus fusion protein in Sendai virus fusion protein leads to enhanced cell-cell fusion and a decreased dependency on the HN attachment protein for activity J Virol 82, 5986–98.

    PubMed  CAS  Google Scholar 

  20. Groskreutz, D. J., Sliwkowski, M. X., and Gorman, C. M. (1994) Genetically engineered proinsulin constitutively processed and secreted as mature, active insulin J Biol Chem 269, 6241–5.

    PubMed  CAS  Google Scholar 

  21. Jin, W., Fuki, I. V., Seidah, N. G., Benjannet, S., Glick, J. M., and Rader, D. J. (2005) Proprotein convertases are responsible for proteolysis and inactivation of endothelial lipase J Biol Chem 280, 36551–9.

    PubMed  CAS  Google Scholar 

  22. Roebroek, A. J., Umans, L., Pauli, I. G., Robertson, E. J., van Leuven, F., Van de Ven, W. J. et al. (1998) Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin Development 125, 4863–76.

    PubMed  CAS  Google Scholar 

  23. Ducy, P., and Karsenty, G. (2000) The family of bone morphogenetic proteins Kidney Int 57, 2207–14.

    PubMed  CAS  Google Scholar 

  24. Karsenty, G. (1999) The genetic transformation of bone biology Genes Dev 13, 3037–51.

    PubMed  CAS  Google Scholar 

  25. Dickson, M. C., Martin, J. S., Cousins, F. M., Kulkarni, A. B., Karlsson, S., and Akhurst, R. J. (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice Development 121, 1845–54.

    PubMed  CAS  Google Scholar 

  26. Degnin, C., Jean, F., Thomas, G., and Christian, J. L. (2004) Cleavages within the prodomain direct intracellular trafficking and degradation of mature bone morphogenetic protein-4 Mol Biol Cell 15, 5012–20.

    PubMed  CAS  Google Scholar 

  27. Dubois, C. M., Blanchette, F., Laprise, M. H., Leduc, R., Grondin, F., and Seidah, N. G. (2001) Evidence that furin is an authentic transforming growth factor-beta1-converting enzyme Am J Pathol 158, 305–16.

    PubMed  CAS  Google Scholar 

  28. Cui, Y., Jean, F., Thomas, G., and Christian, J. L. (1998) BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development EMBO J 17, 4735–43.

    PubMed  CAS  Google Scholar 

  29. Roebroek, A. J., Taylor, N. A., Louagie, E., Pauli, I., Smeijers, L., Snellinx, A. et al. (2004) Limited redundancy of the proprotein convertase furin in mouse liver J Biol Chem 279, 53442–50.

    PubMed  CAS  Google Scholar 

  30. Louagie, E., Taylor, N. A., Flamez, D., Roebroek, A. J., Bright, N. A., Meulemans, S. et al. (2008) Role of furin in granular acidification in the endocrine pancreas: Identification of the V-ATPase subunit Ac45 as a candidate substrate Proc Natl Acad Sci USA 105, 12319–24.

    PubMed  CAS  Google Scholar 

  31. Pesu, M., Watford, W. T., Wei, L., Xu, L., Fuss, I., Strober, W. et al. (2008) T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance Nature 455, 246–50.

    PubMed  CAS  Google Scholar 

  32. Jean, F., Thomas, L., Molloy, S. S., Liu, G., Jarvis, M. A., Nelson, J. A. et al. (2000) A protein-based therapeutic for human cytomegalovirus infection Proc Natl Acad Sci USA 97, 2864–9.

    PubMed  CAS  Google Scholar 

  33. Komiyama, T., Coppola, J. M., Larsen, M. J., van Dort, M. E., Ross, B. D., Day, R. et al. (2009) Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules J Biol Chem 284, 15729–38.

    PubMed  CAS  Google Scholar 

  34. Jiao, G. S., Cregar, L., Wang, J., Millis, S. Z., Tang, C., O‘Malley, S. et al. (2006) Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine Proc Natl Acad Sci USA 103, 19707–12.

    PubMed  CAS  Google Scholar 

  35. Coppola, J. M., Bhojani, M. S., Ross, B. D., and Rehemtulla, A. (2008) A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness Neoplasia 10, 363–70.

    PubMed  CAS  Google Scholar 

  36. Bassi, D. E., Lopez, D. C., Mahloogi, H., Zucker, S., Thomas, G., and Klein-Szanto, A. J. (2001) Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells Proc Natl Acad Sci USA 98, 10326–31.

    PubMed  CAS  Google Scholar 

  37. Khatib, A. M., Siegfried, G., Chrétien, M., Metrakos, P., and Seidah, N. G. (2002) Proprotein convertases in tumor progression and malignancy: Novel targets in cancer therapy Am J Pathol 160, 1921–35.

    PubMed  CAS  Google Scholar 

  38. Shiryaev, S. A., Remacle, A. G., Ratnikov, B. I., Nelson, N. A., Savinov, A. Y., Wei, G. et al. (2007) Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens J Biol Chem 282, 20847–53.

    PubMed  CAS  Google Scholar 

  39. Ozden, S., Lucas-Hourani, M., Ceccaldi, P. E., Basak, A., Valentine, M., Benjannet, S. et al. (2008) Inhibition of chikungunya virus infection in cultured human muscle cells by furin inhibitors: Impairment of the maturation of the E2 surface glycoprotein J Biol Chem 283, 21899–908.

    PubMed  CAS  Google Scholar 

  40. Xiao, Y., Chen, G., Richard, J., Rougeau, N., Li, H., Seidah, N. G. et al. (2008) Cell-surface processing of extracellular human immunodeficiency virus type 1 Vpr by proprotein convertases Virology 372, 384–97.

    PubMed  CAS  Google Scholar 

  41. Docherty, K., and Steiner, D. F. (1982) Post-translational proteolysis in polypeptide hormone biosynthesis Annu Rev Physiol 44, 625–38.

    PubMed  CAS  Google Scholar 

  42. Loh, Y. P. (1987) Peptide precursor processing enzymes within secretory vesicles Ann N Y Acad Sci 493, 292–307.

    PubMed  CAS  Google Scholar 

  43. Kuliawat, R., and Arvan, P. (1994) Distinct molecular mechanisms for protein sorting within immature secretory granules of pancreatic beta-cells J Cell Biol 126, 77–86.

    PubMed  CAS  Google Scholar 

  44. Cromlish, J. A., Seidah, N. G., and Chrétien, M. (1986) Selective cleavage of human ACTH, beta-lipotropin, and the N-terminal glycopeptide at pairs of basic residues by IRCM-serine protease 1. Subcellular localization in small and large vesicles J Biol Chem 261, 10859–70.

    PubMed  CAS  Google Scholar 

  45. Seidah, N. G., Paquin, J., Hamelin, J., Benjannet, S., and Chrétien, M. (1988) Structural and immunological homology of human and porcine pituitary and plasma IRCM-serine protease 1 to plasma kallikrein: Marked selectivity for pairs of basic residues suggests a widespread role in pro-hormone and pro-enzyme processing Biochimie 70, 33–46.

    PubMed  CAS  Google Scholar 

  46. Metters, K. M., Rossier, J., Paquin, J., Chrétien, M., and Seidah, N. G. (1988) Selective cleavage of proenkephalin-derived peptides (less than 23,300 daltons) by plasma kallikrein J Biol Chem 263, 12543–53.

    PubMed  CAS  Google Scholar 

  47. Davidson, H. W., Rhodes, C. J., and Hutton, J. C. (1988) Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases Nature 333, 93–6.

    PubMed  CAS  Google Scholar 

  48. Mullis, K. B., and Faloona, F. A. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction Meth Enzymol 155, 335–50.

    PubMed  CAS  Google Scholar 

  49. Hutchison, C. A., III, Phillips, S., Edgell, M. H., Gillam, S., Jahnke, P., and Smith, M. (1978) Mutagenesis at a specific position in a DNA sequence J Biol Chem 253, 6551–60.

    PubMed  CAS  Google Scholar 

  50. Crine, P., Gianoulakis, C., Seidah, N. G., Gossard, F., Pezalla, P. D., Lis, M. et al. (1978) Biosynthesis of beta-endorphin from beta-lipotropin and a larger molecular weight precursor in rat pars intermedia Proc Natl Acad Sci USA 75, 4719–23.

    PubMed  CAS  Google Scholar 

  51. Crine, P., Seidah, N. G., Routhier, R., Gossard, F., and Chrétien, M. (1980) Processing of two forms of the common precursor to alpha-melanotropin and beta-endorphin in the rat pars intermedia. Evidence for and partial characterization of new pituitary peptides Eur J Biochem 110, 387–96.

    PubMed  CAS  Google Scholar 

  52. Crine, P., Gossard, F., Seidah, N. G., Blanchette, L., Lis, M., and Chrétien, M. (1979) Concomitant synthesis of beta-endorphin and alpha-melanotropin from two forms of pro-opiomelanocortin in the rat pars intermedia Proc Natl Acad Sci USA 76, 5085–9.

    PubMed  CAS  Google Scholar 

  53. Seidah, N. G., Lazure, C., Chrétien, M., Thibault, G., Garcia, R., Cantin, M. et al. (1984) Amino acid sequence of homologous rat atrial peptides: Natriuretic activity of native and synthetic forms Proc Natl Acad Sci USA 81, 2640–4.

    PubMed  CAS  Google Scholar 

  54. Yan, W., Sheng, N., Seto, M., Morser, J., and Wu, Q. (1999) Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart J Biol Chem 274, 14926–35.

    PubMed  CAS  Google Scholar 

  55. Seidah, N. G., Marcinkiewicz, M., Benjannet, S., Gaspar, L., Beaubien, G., Mattei, M. G. et al. (1991) Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: Distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2 Mol Endocrinol 5, 111–22.

    PubMed  CAS  Google Scholar 

  56. Seidah, N. G., Mattei, M. G., Gaspar, L., Benjannet, S., Mbikay, M., and Chrétien, M. (1991) Chromosomal assignments of the genes for neuroendocrine convertase PC1 (NEC1) to human 5q15-21, neuroendocrine convertase PC2 (NEC2) to human 20p11.1-11.2, and furin (mouse 7[D1-E2] region) Genomics 11, 103–7.

    PubMed  CAS  Google Scholar 

  57. Benjannet, S., Rondeau, N., Day, R., Chrétien, M., and Seidah, N. G. (1991) PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues Proc Natl Acad Sci USA 88, 3564–8.

    PubMed  CAS  Google Scholar 

  58. Smeekens, S. P., and Steiner, D. F. (1990) Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2 J Biol Chem 265, 2997–3000.

    PubMed  CAS  Google Scholar 

  59. Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J., and Steiner, D. F. (1991) Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans Proc Natl Acad Sci USA 88, 340–4.

    PubMed  CAS  Google Scholar 

  60. Smeekens, S. P., Montag, A. G., Thomas, G., Albiges-Rizo, C., Carroll, R., Benig, M. et al. (1992) Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3 Proc Natl Acad Sci USA 89, 8822–6.

    PubMed  CAS  Google Scholar 

  61. Thomas, L., Leduc, R., Thorne, B. A., Smeekens, S. P., Steiner, D. F., and Thomas, G. (1991) Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: Evidence for a common core of neuroendocrine processing enzymes Proc Natl Acad Sci USA 88, 5297–301.

    PubMed  CAS  Google Scholar 

  62. Malide, D., Seidah, N. G., Chrétien, M., and Bendayan, M. (1995) Electron microscopic immunocytochemical evidence for the involvement of the convertases PC1 and PC2 in the processing of proinsulin in pancreatic beta-cells J Histochem Cytochem 43, 11–19.

    PubMed  CAS  Google Scholar 

  63. Dikeakos, J. D., Mercure, C., Lacombe, M. J., Seidah, N. G., and Reudelhuber, T. L. (2007) PC1/3, PC2 and PC5/6A are targeted to dense core secretory granules by a common mechanism FEBS J 274, 4094–102.

    PubMed  CAS  Google Scholar 

  64. Dikeakos, J. D., Di, L. P., Lacombe, M. J., Ghirlando, R., Legault, P., Reudelhuber, T. L. et al. (2009) Functional and structural characterization of a dense core secretory granule sorting domain from the PC1/3 protease Proc Natl Acad Sci USA 106, 7408–13.

    PubMed  CAS  Google Scholar 

  65. Fricker, L. D., McKinzie, A. A., Sun, J., Curran, E., Qian, Y., Yan, L. et al. (2000) Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing J Neurosci 20, 639–48.

    PubMed  CAS  Google Scholar 

  66. Qian, Y., Devi, L. A., Mzhavia, N., Munzer, S., Seidah, N. G., and Fricker, L. D. (2000) The C-terminal region of proSAAS is a potent inhibitor of prohormone convertase 1 J Biol Chem 275, 23596–601.

    PubMed  CAS  Google Scholar 

  67. Feng, Y., Reznik, S. E., and Fricker, L. D. (2002) ProSAAS and prohormone convertase 1 are broadly expressed during mouse development Brain Res Gene Expr Patterns 1, 135–40.

    PubMed  CAS  Google Scholar 

  68. Hsi, K. L., Seidah, N. G., Lu, C. L., and Chrétien, M. (1981) Reinvestigation of the N-terminal amino acid sequence of beta-lipotropin from human pituitary glands Biochem Biophys Res Commun 103, 1329–35.

    PubMed  CAS  Google Scholar 

  69. Hsi, K. L., Seidah, N. G., De Serres, G., and Chrétien, M. (1982) Isolation and NH2-terminal sequence of a novel porcine anterior pituitary polypeptide. Homology to proinsulin, secretin and Rous sarcoma virus transforming protein TVFV60 FEBS Lett 147, 261–6.

    PubMed  CAS  Google Scholar 

  70. Seidah, N. G., Hsi, K. L., De Serres, G., Rochemont, J., Hamelin, J., Antakly, T. et al. (1983) Isolation and NH2-terminal sequence of a highly conserved human and porcine pituitary protein belonging to a new superfamily. Immunocytochemical localization in pars distalis and pars nervosa of the pituitary and in the supraoptic nucleus of the hypothalamus Arch Biochem Biophys 225, 525–34.

    PubMed  CAS  Google Scholar 

  71. Marcinkiewicz, M., Benjannet, S., Cantin, M., Seidah, N. G., and Chrétien, M. (1986) CNS distribution of a novel pituitary protein ‘7B2’: Localization in secretory and synaptic vesicles Brain Res 380, 349–56.

    PubMed  CAS  Google Scholar 

  72. Marcinkiewicz, M., Benjannet, S., Seidah, N. G., Cantin, M., and Chrétien, M. (1985) Immunocytochemical localization of a novel pituitary protein (7B2) within the rat brain and hypophysis J Histochem Cytochem 33, 1219–26.

    PubMed  CAS  Google Scholar 

  73. Mbikay, M., Seidah, N. G., and Chrétien, M. (2001) Neuroendocrine secretory protein 7B2: Structure, expression and functions Biochem J 357, 329–42.

    PubMed  CAS  Google Scholar 

  74. Martens, G. J., Braks, J. A., Eib, D. W., Zhou, Y., and Lindberg, I. (1994) The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2 Proc Natl Acad Sci USA 91, 5784–7.

    PubMed  CAS  Google Scholar 

  75. van Horssen, A. M., van den Hurk, W. H., Bailyes, E. M., Hutton, J. C., Martens, G. J., and Lindberg, I. (1995) Identification of the region within the neuroendocrine polypeptide 7B2 responsible for the inhibition of prohormone convertase PC2 J Biol Chem 270, 14292–6.

    PubMed  Google Scholar 

  76. Zhu, X., and Lindberg, I. (1995) 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity J Cell Biol 129, 1641–50.

    PubMed  CAS  Google Scholar 

  77. Benjannet, S., Savaria, D., Chrétien, M., and Seidah, N. G. (1995) 7B2 is a specific intracellular binding protein of the prohormone convertase PC2 J Neurochem 64, 2303–11.

    PubMed  CAS  Google Scholar 

  78. Benjannet, S., Mamarbachi, A. M., Hamelin, J., Savaria, D., Munzer, J. S., Chrétien, M. et al. (1998) Residues unique to the pro-hormone convertase PC2 modulate its autoactivation, binding to 7B2 and enzymatic activity FEBS Lett 428, 37–42.

    PubMed  CAS  Google Scholar 

  79. Paquet, L., Bergeron, F., Boudreault, A., Seidah, N. G., Chrétien, M., Mbikay, M. et al. (1994) The neuroendocrine precursor 7B2 is a sulfated protein proteolytically processed by a ubiquitous furin-like convertase J Biol Chem 269, 19279–85.

    PubMed  CAS  Google Scholar 

  80. Fortenberry, Y., Liu, J., and Lindberg, I. (1999) The role of the 7B2 CT peptide in the inhibition of prohormone convertase 2 in endocrine cell lines J Neurochem 73, 994–1003.

    PubMed  CAS  Google Scholar 

  81. Zhu, X., Zhou, A., Dey, A., Norrbom, C., Carroll, R., Zhang, C. et al. (2002) Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects Proc Natl Acad Sci USA 99, 10293–8.

    PubMed  CAS  Google Scholar 

  82. Furuta, M., Yano, H., Zhou, A., Rouille, Y., Holst, J. J., Carroll, R. et al. (1997) Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2 Proc Natl Acad Sci USA 94, 6646–51.

    PubMed  CAS  Google Scholar 

  83. Jackson, R. S., Creemers, J. W., Ohagi, S., Raffin-Sanson, M. L., Sanders, L., Montague, C. T. et al. (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene Nat Genet 16, 303–6.

    PubMed  CAS  Google Scholar 

  84. Jackson, R. S., Creemers, J. W., Farooqi, I. S., Raffin-Sanson, M. L., Varro, A., Dockray, G. J. et al. (2003) Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency J Clin Invest 112, 1550–60.

    PubMed  CAS  Google Scholar 

  85. Croissandeau, G., Wahnon, F., Yashpal, K., Seidah, N. G., Coderre, T. J., Chrétien, M. et al. (2006) Increased stress-induced analgesia in mice lacking the proneuropeptide convertase PC2 Neurosci Lett 406, 71–5.

    PubMed  CAS  Google Scholar 

  86. Lloyd, D. J., Bohan, S., and Gekakis, N. (2006) Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice Hum Mol Genet 15, 1884–93.

    PubMed  CAS  Google Scholar 

  87. Benzinou, M., Creemers, J. W., Choquet, H., Lobbens, S., Dina, C., Durand, E. et al. (2008) Common nonsynonymous variants in PCSK1 confer risk of obesity Nat Genet 40, 943–5.

    PubMed  CAS  Google Scholar 

  88. Wardman, J. H., Zhang, X., Gagnon, S., Castro, L. M., Zhu, X., Steiner, D. F. et al. (2010) Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics J Neurochem 114, 215–25.

    PubMed  CAS  Google Scholar 

  89. Zhang, X., Pan, H., Peng, B., Steiner, D. F., Pintar, J. E., and Fricker, L. D. (2010) Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis J Neurochem 112, 1168–79.

    PubMed  CAS  Google Scholar 

  90. Morgan, D. J., Wei, S., Gomes, I., Czyzyk, T., Mzhavia, N., Pan, H. et al. (2010) The propeptide precursor proSAAS is involved in fetal neuropeptide processing and body weight regulation J Neurochem 113, 1275–84.

    PubMed  CAS  Google Scholar 

  91. Westphal, C. H., Muller, L., Zhou, A., Zhu, X., Bonner-Weir, S., Schambelan, M. et al. (1999) The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing’s disease Cell 96, 689–700.

    PubMed  CAS  Google Scholar 

  92. Lee, S. N., Peng, B., Desjardins, R., Pintar, J. E., Day, R., and Lindberg, I. (2007) Strain-specific steroidal control of pituitary function J Endocrinol 192, 515–25.

    PubMed  CAS  Google Scholar 

  93. Kiefer, M. C., Tucker, J. E., Joh, R., Landsberg, K. E., Saltman, D., and Barr, P. J. (1991) Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15 DNA Cell Biol 10, 757–69.

    PubMed  CAS  Google Scholar 

  94. Seidah, N. G., Day, R., Hamelin, J., Gaspar, A., Collard, M. W., and Chrétien, M. (1992) Testicular expression of PC4 in the rat: Molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase Mol Endocrinol 6, 1559–70.

    PubMed  CAS  Google Scholar 

  95. Lusson, J., Vieau, D., Hamelin, J., Day, R., Chrétien, M., and Seidah, N. G. (1993) cDNA structure of the mouse and rat subtilisin/kexin-like PC5: A candidate proprotein convertase expressed in endocrine and nonendocrine cells Proc Natl Acad Sci USA 90, 6691–5.

    PubMed  CAS  Google Scholar 

  96. Gyamera-Acheampong, C., Tantibhedhyangkul, J., Weerachatyanukul, W., Tadros, H., Xu, H., Van de Loo, J. W. et al. (2006) Sperm from mice genetically deficient for the PCSK4 proteinase exhibit accelerated capacitation, precocious acrosome reaction, reduced binding to egg zona pellucida, and impaired fertilizing ability Biol Reprod 74, 666–73.

    PubMed  CAS  Google Scholar 

  97. Tadros, H., Chrétien, M., and Mbikay, M. (2001) The testicular germ-cell protease PC4 is also expressed in macrophage-like cells of the ovary J Reprod Immunol 49, 133–52.

    PubMed  CAS  Google Scholar 

  98. Qiu, Q., Basak, A., Mbikay, M., Tsang, B. K., and Gruslin, A. (2005) Role of pro-IGF-II processing by proprotein convertase 4 in human placental development Proc Natl Acad Sci USA 102, 11047–52.

    PubMed  CAS  Google Scholar 

  99. Mbikay, M., Tadros, H., Ishida, N., Lerner, C. P., De Lamirande, E., Chen, A. et al. (1997) Impaired fertility in mice deficient for the testicular germ-cell protease PC4 Proc Natl Acad Sci USA 94, 6842–6.

    PubMed  CAS  Google Scholar 

  100. Li, M., Mbikay, M., and Arimura, A. (2000) Pituitary adenylate cyclase-activating polypeptide precursor is processed solely by prohormone convertase 4 in the gonads Endocrinology 141, 3723–30.

    PubMed  CAS  Google Scholar 

  101. Basak, S., Chrétien, M., Mbikay, M., and Basak, A. (2004) In vitro elucidation of substrate specificity and bioassay of proprotein convertase 4 using intramolecularly quenched fluorogenic peptides Biochem J 380, 505–14.

    PubMed  CAS  Google Scholar 

  102. Majumdar, S., Mohanta, B. C., Chowdhury, D. R., Banik, R., Dinda, B., and Basak, A. (2010) Proprotein convertase inhibitory activities of flavonoids isolated from oroxylum indicum Curr Med Chem 17, 2049–58.

    PubMed  CAS  Google Scholar 

  103. Nakagawa, T., Hosaka, M., Torii, S., Watanabe, T., Murakami, K., and Nakayama, K. (1993) Identification and functional expression of a new member of the mammalian Kex2-like processing endoprotease family: Its striking structural similarity to PACE4 J Biochem (Tokyo) 113, 132–5.

    CAS  Google Scholar 

  104. Nakagawa, T., Murakami, K., and Nakayama, K. (1993) Identification of an isoform with an extremely large Cys-rich region of PC6, a Kex2-like processing endoprotease FEBS Lett 327, 165–71.

    PubMed  CAS  Google Scholar 

  105. Nour, N., Mayer, G., Mort, J. S., Salvas, A., Mbikay, M., Morrison, C. J. et al. (2005) The cysteine-rich domain of the secreted proprotein convertases PC5A and PACE4 functions as a cell surface anchor and interacts with tissue inhibitors of metalloproteinases Mol Biol Cell 16, 5215–26.

    PubMed  CAS  Google Scholar 

  106. Mayer, G., Hamelin, J., Asselin, M. C., Pasquato, A., Marcinkiewicz, E., Tang, M. et al. (2008) The regulated cell surface zymogen activation of the proprotein convertase PC5A directs the processing of its secretory substrates J Biol Chem 283, 2373–84.

    PubMed  CAS  Google Scholar 

  107. Kalus, I., Schnegelsberg, B., Seidah, N. G., Kleene, R., and Schachner, M. (2003) The proprotein convertase PC5A and a metalloprotease are involved in the proteolytic processing of the neural adhesion molecule L1 J Biol Chem 278, 10381–8.

    PubMed  CAS  Google Scholar 

  108. Seidah, N. G., and Prat, A. (2002) Precursor convertases in the secretory pathway, cytosol and extracellular milieu Essays Biochem 38, 79–94.

    PubMed  CAS  Google Scholar 

  109. Xiang, Y., Molloy, S. S., Thomas, L., and Thomas, G. (2000) The PC6B cytoplasmic domain contains two acidic clusters that direct sorting to distinct trans-Golgi network/endosomal compartments Mol Biol Cell 11, 1257–73.

    PubMed  CAS  Google Scholar 

  110. Dong, W., Marcinkiewicz, M., Vieau, D., Chrétien, M., Seidah, N. G., and Day, R. (1995) Distinct mRNA expression of the highly homologous convertases PC5 and PACE4 in the rat brain and pituitary J Neurosci 15, 1778–96.

    PubMed  CAS  Google Scholar 

  111. Zheng, M., Seidah, N. G., and Pintar, J. E. (1997) The developmental expression in the rat CNS and peripheral tissues of proteases PC5 and PACE4 mRNAs: Comparison with other proprotein processing enzymes Dev Biol 181, 268–83.

    PubMed  CAS  Google Scholar 

  112. Essalmani, R., Hamelin, J., Marcinkiewicz, J., Chamberland, A., Mbikay, M., Chrétien, M. et al. (2006) Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse Mol Cell Biol 26, 354–61.

    PubMed  CAS  Google Scholar 

  113. Constam, D. B., and Robertson, E. J. (2000) SPC4/PACE4 regulates a TGFbeta signaling network during axis formation Genes Dev 14, 1146–55.

    PubMed  CAS  Google Scholar 

  114. Essalmani, R., Zaid, A., Marcinkiewicz, J., Chamberland, A., Pasquato, A., Seidah, N. G. et al. (2008) In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate Proc Natl Acad Sci USA 105, 5750–5.

    PubMed  CAS  Google Scholar 

  115. Szumska, D., Pieles, G., Essalmani, R., Bilski, M., Mesnard, D., Kaur, K. et al. (2008) VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5 Genes Dev 22, 1465–77.

    PubMed  CAS  Google Scholar 

  116. Sun, X., Essalmani, R., Seidah, N. G., and Prat, A. (2009) The proprotein convertase PC5/6 is protective against intestinal tumorigenesis: In vivo mouse model Mol Cancer 8, 73.

    PubMed  Google Scholar 

  117. Yuasa, K., Masuda, T., Yoshikawa, C., Nagahama, M., Matsuda, Y., and Tsuji, A. (2009) Subtilisin-like proprotein convertase PACE4 is required for skeletal muscle differentiation J Biochem (Tokyo) 146, 407–15.

    CAS  Google Scholar 

  118. Blanchet, M. H., Le Good, J. A., Mesnard, D., Oorschot, V., Baflast, S., Minchiotti, G. et al. (2008) Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation EMBO J 27, 2580–91.

    PubMed  CAS  Google Scholar 

  119. Seidah, N. G., Hamelin, J., Mamarbachi, M., Dong, W., Tardos, H., Mbikay, M. et al. (1996) cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases Proc Natl Acad Sci USA 93, 3388–93.

    PubMed  CAS  Google Scholar 

  120. Meerabux, J., Yaspo, M. L., Roebroek, A. J., Van de Ven, W. J., Lister, T. A., and Young, B. D. (1996) A new member of the proprotein convertase gene family (LPC) is located at a chromosome translocation breakpoint in lymphomas Cancer Res 56, 448–51.

    PubMed  CAS  Google Scholar 

  121. Van de Loo, J. W., Teuchert, M., Pauli, I., Plets, E., Van de Ven, W. J., and Creemers, J. W. (2000) Dynamic palmitoylation of lymphoma proprotein convertase prolongs its half-life, but is not essential for trans-Golgi network localization Biochem J 352(Pt 3), 827–33.

    PubMed  Google Scholar 

  122. Munzer, J. S., Basak, A., Zhong, M., Mamarbachi, A., Hamelin, J., Savaria, D. et al. (1997) In vitro characterization of the novel proprotein convertase PC7 J Biol Chem 272, 19672–81.

    PubMed  CAS  Google Scholar 

  123. Seidah, N. G. (2004) Proprotein Convertase 7. In: Handbook of Proteolytic Enzymes, 2nd Edition. Barrett, A. J., Rawlings, N. D. and Woessner, J. F., eds., Academic: San Diego, CA, pp. 1877–80.

    Google Scholar 

  124. Basak, A., Zhong, M., Munzer, J. S., Chrétien, M., and Seidah, N. G. (2001) Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: A comparative analysis with fluorogenic peptides Biochem J 353, 537–45.

    PubMed  CAS  Google Scholar 

  125. Fugere, M., Appel, J., Houghten, R. A., Lindberg, I., and Day, R. (2007) Short polybasic peptide sequences are potent inhibitors of PC5/6 and PC7: Use of positional scanning-synthetic peptide combinatorial libraries as a tool for the optimization of inhibitory sequences Mol Pharmacol 71, 323–32.

    PubMed  CAS  Google Scholar 

  126. Decroly, E., Benjannet, S., Savaria, D., and Seidah, N. G. (1997) Comparative functional role of PC7 and furin in the processing of the HIV envelope glycoprotein gp160 FEBS Lett 405, 68–72.

    PubMed  CAS  Google Scholar 

  127. Lopez-Perez, E., Seidah, N. G., and Checler, F. (1999) Proprotein convertase activity contributes to the processing of the Alzheimer’s beta-amyloid precursor protein in human cells: Evidence for a role of the prohormone convertase PC7 in the constitutive alpha-secretase pathway J Neurochem 73, 2056–62.

    PubMed  CAS  Google Scholar 

  128. Scamuffa, N., Basak, A., Lalou, C., Wargnier, A., Marcinkiewicz, J., Siegfried, G. et al. (2008) Regulation of prohepcidin processing and activity by the subtilisin-like proprotein convertases Furin, PC5, PACE4 and PC7 Gut 57, 1573–82.

    PubMed  CAS  Google Scholar 

  129. Siegfried, G., Basak, A., Cromlish, J. A., Benjannet, S., Marcinkiewicz, J., Chrétien, M. et al. (2003) The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis J Clin Invest 111, 1723–32.

    PubMed  CAS  Google Scholar 

  130. Van de Loo, J. W., Creemers, J. W., Bright, N. A., Young, B. D., Roebroek, A. J., and Van de Ven, W. J. (1997) Biosynthesis, distinct post-translational modifications, and functional characterization of lymphoma proprotein convertase J Biol Chem 272, 27116–23.

    PubMed  Google Scholar 

  131. Wouters, S., Decroly, E., Vandenbranden, M., Shober, D., Fuchs, R., Morel, V. et al. (1999) Occurrence of an HIV-1 gp160 endoproteolytic activity in low-density vesicles and evidence for a distinct density distribution from endogenously expressed furin and PC7/LPC convertases FEBS Lett 456, 97–102.

    PubMed  CAS  Google Scholar 

  132. Zhong, M., Munzer, J. S., Basak, A., Benjannet, S., Mowla, S. J., Decroly, E. et al. (1999) The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity J Biol Chem 274, 33913–20.

    PubMed  CAS  Google Scholar 

  133. Nour, N., Basak, A., Chrétien, M., and Seidah, N. G. (2003) Structure-function analysis of the prosegment of the proprotein convertase PC5A J Biol Chem 278, 2886–95.

    PubMed  CAS  Google Scholar 

  134. Bhattacharjya, S., Xu, P., Zhong, M., Chrétien, M., Seidah, N. G., and Ni, F. (2000) Inhibitory activity and structural characterization of a C-terminal peptide fragment derived from the prosegment of the proprotein convertase PC7 Biochemistry 39, 2868–77.

    PubMed  CAS  Google Scholar 

  135. Leonhardt, R. M., Fiegl, D., Rufer, E., Karger, A., Bettin, B., and Knittler, M. R. (2010) Post-endoplasmic reticulum rescue of unstable MHC class I requires proprotein convertase PC7 J Immunol 184, 2985–98.

    PubMed  CAS  Google Scholar 

  136. Bassi, D. E., Fu, J., Lopez, D. C., and Klein-Szanto, A. J. (2005) Proprotein convertases: “Master switches” in the regulation of tumor growth and progression Mol Carcinog 44, 151–61.

    PubMed  CAS  Google Scholar 

  137. Seidah, N. G., Mowla, S. J., Hamelin, J., Mamarbachi, A. M., Benjannet, S., Toure, B. B. et al. (1999) Mammalian subtilisin/kexin isozyme SKI-1: A widely expressed proprotein convertase with a unique cleavage specificity and cellular localization Proc Natl Acad Sci USA 96, 1321–6.

    PubMed  CAS  Google Scholar 

  138. Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress Mol Biol Cell 10, 3787–99.

    PubMed  CAS  Google Scholar 

  139. Cheng, D., Espenshade, P. J., Slaughter, C. A., Jaen, J. C., Brown, M. S., and Goldstein, J. L. (1999) Secreted site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins J Biol Chem 274, 22805–12.

    PubMed  CAS  Google Scholar 

  140. Horton, J. D., Goldstein, J. L., and Brown, M. S. (2002) SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver J Clin Invest 109, 1125–31.

    PubMed  CAS  Google Scholar 

  141. Elagoz, A., Benjannet, S., Mammarbassi, A., Wickham, L., and Seidah, N. G. (2002) Biosynthesis and cellular trafficking of the convertase SKI-1/S1P: Ectodomain shedding requires SKI-1 activity J Biol Chem 277, 11265–75.

    PubMed  CAS  Google Scholar 

  142. Tadros, H., Seidah, N. G., Chrétien, M., and Mbikay, M. (2002) Genetic mapping of the gene for SKI-1/S1P protease (locus symbol Mbtps1) to mouse chromosome 8 DNA Seq 13, 109–11.

    PubMed  CAS  Google Scholar 

  143. Pasquato, A., Pullikotil, P., Asselin, M. C., Vacatello, M., Paolillo, L., Ghezzo, F. et al. (2006) The Proprotein Convertase SKI-1/S1P: In vitro analysis of lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors J Biol Chem 281, 23471–81.

    PubMed  CAS  Google Scholar 

  144. Sakai, J., Rawson, R. B., Espenshade, P. J., Cheng, D., Seegmiller, A. C., Goldstein, J. L. et al. (1998) Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells Mol Cell 2, 505–14.

    PubMed  CAS  Google Scholar 

  145. Brown, M. S., and Goldstein, J. L. (1997) The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor Cell 89, 331–40.

    PubMed  CAS  Google Scholar 

  146. Lenz, O., ter Meulen, J., Klenk, H. D., Seidah, N. G., and Garten, W. (2001) The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P Proc Natl Acad Sci USA 98, 12701–5.

    PubMed  CAS  Google Scholar 

  147. Ye, J., Rawson, R. B., Komuro, R., Chen, X., Dave, U. P., Prywes, R. et al. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs Mol Biol Cell 6, 1355–64.

    CAS  Google Scholar 

  148. Yang, J., Goldstein, J. L., Hammer, R. E., Moon, Y. A., Brown, M. S., and Horton, J. D. (2001) Decreased lipid synthesis in livers of mice with disrupted Site-1 protease gene Proc Natl Acad Sci USA 98, 13607–12.

    PubMed  CAS  Google Scholar 

  149. Mouchantaf, R., Watt, H. L., Sulea, T., Seidah, N. G., Alturaihi, H., Patel, Y. C. et al. (2004) Prosomatostatin is proteolytically processed at the amino terminal segment by subtilase SKI-1 Regul Pept 120, 133–40.

    PubMed  CAS  Google Scholar 

  150. Lu, R., Yang, P., O‘Hare, P., and Misra, V. (1997) Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor Mol Cell Biol 17, 5117–26.

    PubMed  CAS  Google Scholar 

  151. Stirling, J., and O‘Hare, P. (2006) CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P Mol Biol Cell 17, 413–26.

    PubMed  CAS  Google Scholar 

  152. Pullikotil, P., Vincent, M., Nichol, S. T., and Seidah, N. G. (2004) Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: Processing of SREBP-2, ATF6, and a viral glycoprotein J Biol Chem 279, 17338–47.

    PubMed  CAS  Google Scholar 

  153. Basak, A., Chrétien, M., and Seidah, N. G. (2002) A rapid fluorometric assay for the proteolytic activity of SKI-1/S1P based on the surface glycoprotein of the hemorrhagic fever Lassa virus FEBS Lett 514, 333–9.

    PubMed  CAS  Google Scholar 

  154. Toure, B. B., Munzer, J. S., Basak, A., Benjannet, S., Rochemont, J., Lazure, C. et al. (2000) Biosynthesis and enzymatic characterization of human SKI-1/S1P and the processing of its inhibitory prosegment J Biol Chem 275, 2349–58.

    PubMed  CAS  Google Scholar 

  155. Okada, T., Haze, K., Nadanaka, S., Yoshida, H., Seidah, N. G., Hirano, Y. et al. (2003) A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6 J Biol Chem 278, 31024–32.

    PubMed  CAS  Google Scholar 

  156. De Windt, A., Rai, M., Bernier, L., Thelen, K., Soini, J., Lefebvre, C. et al. (2007) Gene set enrichment analysis reveals several globally affected pathways due to SKI-1/S1P inhibition in HepG2 cells DNA Cell Biol 26, 765–72.

    PubMed  Google Scholar 

  157. Hawkins, J. L., Robbins, M. D., Warren, L. C., Xia, D., Petras, S. F., Valentine, J. J. et al. (2008) Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals J Pharmacol Exp Ther 326, 801–8.

    PubMed  CAS  Google Scholar 

  158. Hay, B. A., Abrams, B., Zumbrunn, A. Y., Valentine, J. J., Warren, L. C., Petras, S. F. et al. (2007) Aminopyrrolidineamide inhibitors of site-1 protease Bioorg Med Chem Lett 17, 4411–14.

    PubMed  CAS  Google Scholar 

  159. Gorski, J. P., Huffman, N. T., Cui, C., Henderson, E. P., Midura, R. J., and Seidah, N. G. (2009) Potential role of proprotein convertase SKI-1 in the mineralization of primary bone Cell Tissue Organ 189, 25–32.

    CAS  Google Scholar 

  160. Beyer, W. R., Popplau, D., Garten, W., Von Laer, D., and Lenz, O. (2003) Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P J Virol 77, 2866–72.

    PubMed  CAS  Google Scholar 

  161. Vincent, M. J., Sanchez, A. J., Erickson, B. R., Basak, A., Chrétien, M., Seidah, N. G. et al. (2003) Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1 J Virol 77, 8640–9.

    PubMed  CAS  Google Scholar 

  162. Mitchell, K. J., Pinson, K. I., Kelly, O. G., Brennan, J., Zupicich, J., Scherz, P. et al. (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development Nat Genet 28, 241–9.

    PubMed  CAS  Google Scholar 

  163. Patra, D., Xing, X., Davies, S., Bryan, J., Franz, C., Hunziker, E. B. et al. (2007) Site-1 protease is essential for endochondral bone formation in mice J Cell Biol 179, 687–700.

    PubMed  CAS  Google Scholar 

  164. Brown, M. S., and Goldstein, J. L. (1974) Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity Proc Natl Acad Sci USA 71, 788–92.

    PubMed  CAS  Google Scholar 

  165. Maxfield, F. R., and Tabas, I. (2005) Role of cholesterol and lipid organization in disease Nature 438, 612–21.

    PubMed  CAS  Google Scholar 

  166. Briel, M., Nordmann, A. J., and Bucher, H. C. (2005) Statin therapy for prevention and treatment of acute and chronic cardiovascular disease: Update on recent trials and metaanalyses Curr Opin Lipidol 16, 601–5.

    PubMed  CAS  Google Scholar 

  167. Brown, M. S., and Goldstein, J. L. (2006) Biomedicine. Lowering LDL – not only how low, but how long? Science 311, 1721–3.

    PubMed  CAS  Google Scholar 

  168. Tall, A. R. (2006) Protease variants, LDL, and coronary heart disease New Engl J Med 354, 1310–12.

    PubMed  CAS  Google Scholar 

  169. Seidah, N. G., Benjannet, S., Wickham, L., Marcinkiewicz, J., Jasmin, S. B., Stifani, S. et al. (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation Proc Natl Acad Sci USA 100, 928–33.

    PubMed  CAS  Google Scholar 

  170. Abifadel, M., Varret, M., Rabes, J. P., Allard, D., Ouguerram, K., Devillers, M. et al. (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia Nat Genet 34, 154–6.

    PubMed  CAS  Google Scholar 

  171. Seidah, N. G., and Prat, A. (2007) The proprotein convertases are potential targets in the treatment of dyslipidemia J Mol Med 85, 685–96.

    PubMed  CAS  Google Scholar 

  172. Cohen, J., Pertsemlidis, A., Kotowski, I. K., Graham, R., Garcia, C. K., and Hobbs, H. H. (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 Nat Genet 37, 161–5.

    PubMed  CAS  Google Scholar 

  173. Kotowski, I. K., Pertsemlidis, A., Luke, A., Cooper, R. S., Vega, G. L., Cohen, J. C. et al. (2006) A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol Am J Hum Genet 78, 410–22.

    PubMed  CAS  Google Scholar 

  174. Sirois, F., Gbeha, E., Sanni, A., Chrétien, M., Labuda, D., and Mbikay, M. (2008) Ethnic differences in the frequency of the cardioprotective C679X PCSK9 mutation in a West African population Genet Test 12, 377–80.

    PubMed  CAS  Google Scholar 

  175. Leren, T. P. (2004) Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia Clin Genet 65, 419–22.

    PubMed  CAS  Google Scholar 

  176. Timms, K. M., Wagner, S., Samuels, M. E., Forbey, K., Goldfine, H., Jammulapati, S. et al. (2004) A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree Hum Genet 114, 349–53.

    PubMed  CAS  Google Scholar 

  177. Allard, D., Amsellem, S., Abifadel, M., Trillard, M., Devillers, M., Luc, G. et al. (2005) Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia Hum Mutat 26, 497–506.

    PubMed  Google Scholar 

  178. Naoumova, R. P., Tosi, I., Patel, D., Neuwirth, C., Horswell, S. D., Marais, A. D. et al. (2005) Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: Long-term follow-up and treatment response Arterioscler Thromb Vasc Biol 25, 2654–60.

    PubMed  CAS  Google Scholar 

  179. Berge, K. E., Ose, L., and Leren, T. P. (2006) Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy Arterioscler Thromb Vasc Biol 26, 1094–100.

    PubMed  CAS  Google Scholar 

  180. Zhao, Z., Tuakli-Wosornu, Y., Lagace, T. A., Kinch, L., Grishin, N. V., Horton, J. D. et al. (2006) Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote Am J Hum Genet 79, 514–23.

    PubMed  CAS  Google Scholar 

  181. Hooper, A. J., Marais, A. D., Tanyanyiwa, D. M., and Burnett, J. R. (2007) The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population Atherosclerosis 193, 445–8.

    PubMed  CAS  Google Scholar 

  182. Rashid, S., Curtis, D. E., Garuti, R., Anderson, N. N., Bashmakov, Y., Ho, Y. K. et al. (2005) Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9 Proc Natl Acad Sci USA 102, 5374–9.

    PubMed  CAS  Google Scholar 

  183. Zaid, A., Roubtsova, A., Essalmani, R., Marcinkiewicz, J., Chamberland, A., Hamelin, J. et al. (2008) Proprotein convertase subtilisin/kexin type 9 (PCSK9): Hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration Hepatology 48, 646–54.

    PubMed  CAS  Google Scholar 

  184. Maxwell, K. N., and Breslow, J. L. (2004) Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype Proc Natl Acad Sci USA 101, 7100–5.

    PubMed  CAS  Google Scholar 

  185. Benjannet, S., Rhainds, D., Essalmani, R., Mayne, J., Wickham, L., Jin, W. et al. (2004) NARC-1/PCSK9 and its natural mutants: Zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol J Biol Chem 279, 48865–75.

    PubMed  CAS  Google Scholar 

  186. Park, S. W., Moon, Y. A., and Horton, J. D. (2004) Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver J Biol Chem 279, 50630–8.

    PubMed  CAS  Google Scholar 

  187. Maxwell, K. N., Fisher, E. A., and Breslow, J. L. (2005) Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment Proc Natl Acad Sci USA 102, 2069–74.

    PubMed  CAS  Google Scholar 

  188. Nassoury, N., Blasiole, D. A., Tebon, O. A., Benjannet, S., Hamelin, J., Poupon, V. et al. (2007) The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR Traffic 8, 718–32.

    PubMed  CAS  Google Scholar 

  189. Dubuc, G., Chamberland, A., Wassef, H., Davignon, J., Seidah, N. G., Bernier, L. et al. (2004) Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia Arterioscler Thromb Vasc Biol 24, 1454–9.

    PubMed  CAS  Google Scholar 

  190. Attie, A. D., and Seidah, N. G. (2005) Dual regulation of the LDL receptor – some clarity and new questions Cell Metab 1, 290–2.

    PubMed  CAS  Google Scholar 

  191. McNutt, M. C., Lagace, T. A., and Horton, J. D. (2007) Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells J Biol Chem 282, 20799–803.

    PubMed  CAS  Google Scholar 

  192. Li, J., Tumanut, C., Gavigan, J. A., Huang, W. J., Hampton, E. N., Tumanut, R. et al. (2007) Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity Biochem J 406, 203–7.

    PubMed  CAS  Google Scholar 

  193. Dubuc, G., Tremblay, M., Pare, G., Jacques, H., Hamelin, J., Benjannet, S. et al. (2010) A new method for measurement of total plasma PCSK9: Clinical applications J Lipid Res 51, 140–9.

    PubMed  Google Scholar 

  194. Cameron, J., Holla, O. L., Laerdahl, J. K., Kulseth, M. A., Ranheim, T., Rognes, T. et al. (2008) Characterization of novel mutations in the catalytic domain of the PCSK9 gene J Intern Med 263, 420–31.

    PubMed  CAS  Google Scholar 

  195. Mayne, J., Raymond, A., Chaplin, A., Cousins, M., Kaefer, N., Gyamera-Acheampong, C. et al. (2007) Plasma PCSK9 levels correlate with cholesterol in men but not in women Biochem Biophys Res Commun 361, 451–6.

    PubMed  CAS  Google Scholar 

  196. Lagace, T. A., Curtis, D. E., Garuti, R., McNutt, M. C., Park, S. W., Prather, H. B. et al. (2006) Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice J Clin Invest 116, 2995–3005.

    PubMed  CAS  Google Scholar 

  197. Cunningham, D., Danley, D. E., Geoghegan, K. F., Griffor, M. C., Hawkins, J. L., Subashi, T. A. et al. (2007) Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia Nat Struct Biol 14, 413–19.

    CAS  Google Scholar 

  198. Hampton, E. N., Knuth, M. W., Li, J., Harris, J. L., Lesley, S. A., and Spraggon, G. (2007) The self-inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin within the C-terminal domain Proc Natl Acad Sci USA 104, 14604–9.

    PubMed  CAS  Google Scholar 

  199. Piper, D. E., Jackson, S., Liu, Q., Romanow, W. G., Shetterly, S., Thibault, S. T. et al. (2007) The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol Structure 15, 545–52.

    PubMed  CAS  Google Scholar 

  200. Zhang, D. W., Lagace, T. A., Garuti, R., Zhao, Z., McDonald, M., Horton, J. D. et al. (2007) Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat a of low density lipoprotein receptor decreases receptor recycling and increases degradation J Biol Chem 282, 18602–12.

    PubMed  CAS  Google Scholar 

  201. Kwon, H. J., Lagace, T. A., McNutt, M. C., Horton, J. D., and Deisenhofer, J. (2008) Molecular basis for LDL receptor recognition by PCSK9 Proc Natl Acad Sci USA 105, 1820–5.

    PubMed  CAS  Google Scholar 

  202. Dewpura, T., Raymond, A., Hamelin, J., Seidah, N. G., Mbikay, M., Chrétien, M. et al. (2008) PCSK9 is phosphorylated by a Golgi casein kinase-like kinase ex vivo and circulates as a phosphoprotein in humans FEBS J 275, 3480–93.

    PubMed  CAS  Google Scholar 

  203. Poirier, S., Mayer, G., Benjannet, S., Bergeron, E., Marcinkiewicz, J., Nassoury, N. et al. (2008) The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2 J Biol Chem 283, 2363–72.

    PubMed  CAS  Google Scholar 

  204. Labonte, P., Begley, S., Guevin, C., Asselin, M. C., Nassoury, N., Mayer, G. et al. (2009) PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression Hepatology 50, 17–24.

    PubMed  CAS  Google Scholar 

  205. Cameron, J., Holla, O. L., Ranheim, T., Kulseth, M. A., Berge, K. E., and Leren, T. P. (2006) Effect of mutations in the PCSK9 gene on the cell surface LDL receptors Hum Mol Genet 15, 1551–8.

    PubMed  CAS  Google Scholar 

  206. Conesa, M., Prat, A., Mort, J. S., Marvaldi, J., Lissitzky, J. C., and Seidah, N. G. (2003) Down-regulation of alphav/beta3 integrin via misrouting to lysosomes by overexpression of a beta3Lamp1 fusion protein Biochem J 370, 703–11.

    PubMed  CAS  Google Scholar 

  207. Zhang, D. W., Garuti, R., Tang, W. J., Cohen, J. C., and Hobbs, H. H. (2008) Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor Proc Natl Acad Sci USA 105, 13045–50.

    PubMed  CAS  Google Scholar 

  208. Qian, Y. W., Schmidt, R. J., Zhang, Y., Chu, S., Lin, A., Wang, H. et al. (2007) Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis J Lipid Res 48, 1488–98.

    PubMed  CAS  Google Scholar 

  209. Chan, J. C., Piper, D. E., Cao, Q., Liu, D., King, C., Wang, W. et al. (2009) A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates Proc Natl Acad Sci USA 106, 9820–5.

    PubMed  CAS  Google Scholar 

  210. Poirier, S., Mayer, G., Poupon, V., McPherson, P. S., Desjardins, R., Ly, K. et al. (2009) Dissection of the endogenous cellular pathways of PCSK9-induced LDLR degradation: Evidence for an intracellular route J Biol Chem 284, 28856–64.

    PubMed  CAS  Google Scholar 

  211. Poupon, V., Girard, M., Legendre-Guillemin, V., Thomas, S., Bourbonniere, L., Philie, J. et al. (2008) Clathrin light chains function in mannose phosphate receptor trafficking via regulation of actin assembly Proc Natl Acad Sci USA 105, 168–73.

    PubMed  CAS  Google Scholar 

  212. Mayer, G., Poirier, S., and Seidah, N. G. (2008) Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels J Biol Chem 283, 31791–801.

    PubMed  CAS  Google Scholar 

  213. Cesarman, G. M., Guevara, C. A., and Hajjar, K. A. (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA) II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation J Biol Chem 269, 21198–203.

    PubMed  CAS  Google Scholar 

  214. Ma, A. S., Bell, D. J., Mittal, A. A., and Harrison, H. H. (1994) Immunocytochemical detection of extracellular annexin II in cultured human skin keratinocytes and isolation of annexin II isoforms enriched in the extracellular pool J Cell Sci 107(Pt 7), 1973–84.

    PubMed  CAS  Google Scholar 

  215. Chung, C. Y., and Erickson, H. P. (1994) Cell surface annexin II is a high affinity receptor for the alternatively spliced segment of tenascin-C J Cell Biol 126, 539–48.

    PubMed  CAS  Google Scholar 

  216. Patchell, B. J., Wojcik, K. R., Yang, T. L., White, S. R., and Dorscheid, D. R. (2007) Glycosylation and annexin II cell surface translocation mediate airway epithelial wound repair Am J Physiol Lung Cell Mol Physiol 293, L354–63.

    PubMed  CAS  Google Scholar 

  217. Yeatman, T. J., Updyke, T. V., Kaetzel, M. A., Dedman, J. R., and Nicolson, G. L. (1993) Expression of annexins on the surfaces of non-metastatic and metastatic human and rodent tumor cells Clin Exp Metastasis 11, 37–44.

    PubMed  CAS  Google Scholar 

  218. Luo, Y., Warren, L., Xia, D., Jensen, H., Sand, T., Petras, S. et al. (2008) Function and distribution of circulating human PCSK9 expressed extrahepatically in transgenic mice J Lipid Res 50, 1581–8.

    PubMed  Google Scholar 

  219. Dietschy, J. M., Turley, S. D., and Spady, D. K. (1993) Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans J Lipid Res 34, 1637–59.

    PubMed  CAS  Google Scholar 

  220. Alborn, W. E., Cao, G., Careskey, H. E., Qian, Y. W., Subramaniam, D. R., Davies, J. et al. (2007) Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol Clin Chem 53, 1814–19.

    PubMed  CAS  Google Scholar 

  221. Grefhorst, A., McNutt, M. C., Lagace, T. A., and Horton, J. D. (2008) Plasma PCSK9 preferentially reduces liver LDL receptors in mice J Lipid Res 49, 1303–11.

    PubMed  CAS  Google Scholar 

  222. Mbikay, M., Sirois, F., Mayne, J., Wang, G. S., Chen, A., Dewpura, T. et al. (2010) PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities FEBS Lett 584, 701–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks all present and past members of the Seidah laboratory for all their help during the arduous but exciting years of PC discovery and characterization. This research was supported by CIHR grants MOP-36496 and # CTP-82946 and MOP 36496, a Strauss Foundation grant, and a Canada Chair # 201652.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil G. Seidah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Seidah, N.G. (2011). The Proprotein Convertases, 20 Years Later. In: Mbikay, M., Seidah, N. (eds) Proprotein Convertases. Methods in Molecular Biology, vol 768. Humana Press. https://doi.org/10.1007/978-1-61779-204-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-204-5_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-203-8

  • Online ISBN: 978-1-61779-204-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics