Skip to main content

Analysis of Interdomain Interactions of the Androgen Receptor

  • Protocol
  • First Online:
Androgen Action

Part of the book series: Methods in Molecular Biology ((MIMB,volume 776))

Abstract

High-affinity binding of testosterone or dihydrotestosterone to the androgen receptor (AR) triggers the androgen-dependent AR NH2- and carboxyl-terminal (N/C) interaction between the AR NH2-terminal FXXLF motif and the activation function 2 (AF2) hydrophobic binding surface in the ligand-binding domain. The functional importance of the AR N/C interaction is supported by naturally occurring loss-of-function AR AF2 mutations where AR retains high-affinity androgen binding but is defective in AR FXXLF motif binding. Ligands with agonist activity in vivo such as testosterone, dihydrotestosterone, and the synthetic anabolic steroids induce the AR N/C interaction and increase AR transcriptional activity in part by slowing the dissociation rate of bound ligand and stabilizing AR against degradation. AR ligand-binding domain competitive antagonists inhibit the agonist-dependent AR N/C interaction. Although the human AR N/C interaction is important for transcriptional activity, it has an inhibitory effect on transcriptional activity from AF2 by competing for p160 coactivator LXXLL motif binding. The primate-specific AR coregulatory protein, melanoma antigen gene protein-A11 (MAGE-A11), modulates the AR N/C interaction through a direct interaction with the AR FXXLF motif. Inhibition of AF2 transcriptional activity by the AR N/C interaction is relieved by AR FXXLF motif binding to the F-box region of MAGE-11. Described here are methods to measure the androgen-dependent AR N/C interdomain interaction and the influence of transcriptional coregulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson, E. M., and French, F. S. (1976) Binding properties of androgen receptors: evidence for identical receptors in rat testis, epididymis, and prostate. J. Biol. Chem. 251, 5620–5629.

    PubMed  CAS  Google Scholar 

  2. Askew, E. B., Gampe, R. T., Stanley, T. B., Faggart, J. L., and Wilson, E. M. (2007) Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. J. Biol. Chem. 282, 25801–25816.

    Article  PubMed  CAS  Google Scholar 

  3. Imperato-McGinley, J., Guerrero, L., Gautier, T., and Peterson, R. E. (1974) Steroid 5-alpha-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science 186, 1213–1215.

    Article  PubMed  CAS  Google Scholar 

  4. Zhou, Z. X., Lane, M. V., Kemppainen, J. A., French, F. S., and Wilson, E. M. (1995) Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol. Endocrinol. 9, 208–218.

    Article  PubMed  CAS  Google Scholar 

  5. Wong, C. I., Zhou, Z. X., Sar, M., and Wilson, E. M. (1993) Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains. J. Biol. Chem. 268, 19004–19012.

    PubMed  CAS  Google Scholar 

  6. Langley, E., Zhou, Z. X., and Wilson, E. M. (1995) Evidence for an antiparallel orientation of the ligand activated human androgen receptor dimer. J. Biol. Chem. 270, 29983–29990.

    Article  PubMed  CAS  Google Scholar 

  7. Langley, E., Kemppainen, J. A., and Wilson, E. M. (1998) Intermolecular NH2-/carboxyl-terminal interactions in androgen receptor dimerization revealed by mutations that cause androgen insensitivity. J. Biol. Chem. 273, 92–101.

    Article  PubMed  CAS  Google Scholar 

  8. Quigley, C. A., Tan, J. A., He, B., Zhou, Z. X., Mebarki, F., Morel, Y., Forest, M., Chatelain, P., Ritzen, E. M., French, F. S., and Wilson, E. M. (2004) Partial androgen insensitivity with phenotypic variation caused by androgen receptor mutations that disrupt activation function 2 and the NH2- and carboxyl-terminal interaction. Mech. Ageing Dev. 125, 683–695.

    Article  PubMed  CAS  Google Scholar 

  9. He, B., Kemppainen, J. A., Voegel, J. J., Gronemeyer, H., and Wilson, E. M. (1999) Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH2-terminal domain. J. Biol. Chem. 274, 37219–37225.

    Article  PubMed  CAS  Google Scholar 

  10. Ghali, S. A., Gottlieb, B., Lumbroso, R., Beitel, L. K., Elhaji, Y., Wu, J., Pinsky, L., and Trifiro, M. A. (2003) The use of androgen receptor amino/carboxyl-terminal interaction assays to investigate androgen receptor gene mutations in subjects with varying degrees of androgen insensitivity. J. Clin. Endocrinol. Metab. 88, 2185–2193.

    Article  PubMed  CAS  Google Scholar 

  11. Thompson, J., Saatcioglu, F., Jänne, O. A., and Palvimo, J. J. (2001) Disrupted amino- and carboxyl-terminal interactions of the androgen receptor are linked to androgen insensitivity. Mol. Endocrinol. 15, 923–935.

    Article  PubMed  CAS  Google Scholar 

  12. Deeb, A., Jääskeläinen, J., Dattani, M., Whitaker, H. C., Costigan, C., and Hughes, I. A. (2008) A novel mutation in the human androgen receptor suggests a regulatory role for the hinge region in amino-terminal and carboxy-terminal interactions. J. Clin. Endocrinol. Metab. 93, 3691–3696.

    Article  PubMed  CAS  Google Scholar 

  13. Jääskeläinen, J., Deeb, A., Schwabe, J. W., Mongan, N. P., Martin, H., and Hughes, I. A. (2006) Human androgen receptor gene ligand-binding-domain mutations leading to disrupted interaction between the N- and C-terminal domains. J. Mol. Endocrinol. 36, 361–368.

    Article  PubMed  Google Scholar 

  14. Kemppainen, J. A., Langley, E., Wong, C. I., Bobseine, K., Kelce, W. R., and Wilson, E. M. (1999) Distinguishing androgen receptor agonists and antagonists: distinct mechanisms of activation by medroxyprogesterone acetate and dihydrotestosterone. Mol. Endocrinol. 13, 440–454.

    Article  PubMed  CAS  Google Scholar 

  15. He, B., Kemppainen, J. A., and Wilson, E. M. (2000) FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J. Biol. Chem. 275, 22986–22994.

    Article  PubMed  CAS  Google Scholar 

  16. He, B., and Wilson, E. M. (2002) The NH2-terminal and carboxyl-terminal interaction in the human androgen receptor. Mol. Gen. Metab. 75, 293–298.

    Article  CAS  Google Scholar 

  17. He, B., and Wilson, E. M. (2003) Electrostatic modulation of steroid receptor recruitment of the LXXLL and FXXLF motifs. Mol. Cell. Biol. 23, 2135–2150.

    Article  PubMed  CAS  Google Scholar 

  18. He, B., Lee, L. W., Minges, J. T., and Wilson, E. M. (2002) Dependence of selective gene activation on the androgen receptor NH2- and carboxyl-terminal interaction. J. Biol. Chem. 277, 25631–25639.

    Article  PubMed  CAS  Google Scholar 

  19. Callewaert, L., Verrijdt, G., Christiaens, V., Haelens, A., and Claessens, F. (2003) Dual function of an amino-terminal amphipatic helix in androgen receptor-mediated transactivation through specific and nonspecific response elements. J. Biol. Chem. 278, 8212–8218.

    Article  PubMed  CAS  Google Scholar 

  20. He, B., Bowen, N. T., Minges, J. T., and Wilson, E. M. (2001) Androgen-induced NH2- and carboxyl-terminal interaction inhibits p160 coactivator recruitment by activation function 2. J. Biol. Chem. 276, 42293–42301.

    Article  PubMed  CAS  Google Scholar 

  21. He, B., Gampe, R. T., Hnat, A. T., Faggart, J. L., Minges, J. T., French, F. S., and Wilson, E. M. (2006) Probing the functional link between androgen receptor coactivator and ligand binding sites in prostate cancer and androgen insensitivity. J. Biol. Chem. 281, 6648–6663.

    Article  PubMed  CAS  Google Scholar 

  22. He, B., Gampe, R. T., Kole, A. J., Hnat, A. T., Stanley, T. B., An, G., Stewart, E. L., Kalman, R. I., Minges, J. T., and Wilson, E. M. (2004) Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol. Cell 16, 425–438.

    Article  PubMed  CAS  Google Scholar 

  23. Simental, J. A., Sar, M., Lane, M. V., French, F. S., and Wilson, E. M. (1991) Transcriptional activation and nuclear targeting signals of the human androgen receptor. J. Biol. Chem. 266, 510–518.

    PubMed  CAS  Google Scholar 

  24. Bai, S., He, B., and Wilson, E. M. (2005) Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol. Cell. Biol. 25, 1238–1257.

    Article  PubMed  CAS  Google Scholar 

  25. Askew, E. B., Bai, S., Hnat, A. T., Minges, J. T., and Wilson, E. M. (2009) Melanoma antigen gene protein-A11 (MAGE-11) F-box links the androgen receptor NH2-terminal transactivation domain to p160 coactivators. J. Biol. Chem. 284, 34793–34808.

    Article  PubMed  CAS  Google Scholar 

  26. Bai, S., and Wilson, E. M. (2008) Epidermal growth factor-dependent phosphorylation and ubiquitinylation of MAGE-11 regulates its interaction with the androgen receptor. Mol. Cell. Biol. 28, 1947–1963.

    Article  PubMed  CAS  Google Scholar 

  27. Finkel, T., Duc, J., Fearon, E. R., Dang, C. V., and Tomaselli, G. F. (1993) Detection and modulation in vivo of helix–loop–helix protein–protein interactions. J. Biol. Chem. 268, 5–8.

    PubMed  CAS  Google Scholar 

  28. Wagner, B. L., Norris. J. D., Knotts, T. A., Weigel, N. L., and McDonnell, D. P. (1998) The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol. Cell. Biol. 18, 1369–1378.

    PubMed  CAS  Google Scholar 

  29. Raivio, T., Palvimo, J. J., Dunkel, L., Wickman, S., and Jänne, O. A. (2001) Novel assay for determination of androgen bioactivity in human serum. J. Clin. Endocrinol. Metab. 86, 1539–1544.

    Article  PubMed  CAS  Google Scholar 

  30. Kemppainen, J. A., and Wilson, E. M. (1996) Agonist and antagonist activities of hydroxyflutamide and Casodex relate to androgen receptor stabilization. Urology 48, 157–163.

    Article  PubMed  CAS  Google Scholar 

  31. Berrevoets, C. A., Doesburg, P., Steketee, K., Trapman, J., and Brinkmann, A. O. (1998) Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Mol. Endocrinol. 12, 1172–1183.

    Article  PubMed  CAS  Google Scholar 

  32. He, B., Minges, J. T., Lee, L. W., and Wilson, E. M. (2002) The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J. Biol. Chem. 277, 10226–10235.

    Article  PubMed  CAS  Google Scholar 

  33. Doesburg, P., Kuil, C. W., Berrevoets, C. A., Steketee, K., Faber, P. W., Mulder, E., Brinkmann, A. O., and Trapman, J. (1997) Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Biochemistry 36, 1052–1064.

    Article  PubMed  CAS  Google Scholar 

  34. Lubahn, D. B., Joseph, D. R., Sar, M., Tan, J., Higgs, H. N., Larson, R. E., French, F. S., and Wilson, E. M. (1988) The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Mol. Endocrinol. 2, 1265–1275.

    Article  PubMed  CAS  Google Scholar 

  35. Choong, C. S., Kemppainen, J. A., Zhou, Z. X., and Wilson, E. M. (1996) Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol. Endocrinol. 10, 1527–1535.

    Article  PubMed  CAS  Google Scholar 

  36. Choong, C. S., Kemppainen, J. A., and Wilson, E. M. (1998) Evolution of the primate androgen receptor: a structural basis for disease. J. Mol. Evol. 47, 334–342.

    Article  PubMed  CAS  Google Scholar 

  37. Choong, C. S., and Wilson, E. M. (1998) Trinucleotide repeats in the human androgen receptor: a molecular basis for disease. J. Mol. Endocrinol. 21, 235–257.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, Q., Lu, J., and Yong E. L. (2001) Ligand- and coactivator-mediated transactivation function (AF2) of the androgen receptor ligand-binding domain is inhibited by the cognate hinge region. J. Biol. Chem. 276, 7493–7499.

    Article  PubMed  CAS  Google Scholar 

  39. Haelens, A., Tanner, T., Denayer, S., Callewaert, L., and Claessens, F. (2007) The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res. 67, 4514–4523.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou, Z. X., Sar, M., Simental, J. A., Lane, M. V., and Wilson, E. M. (1994) A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J. Biol. Chem. 269, 13115–13123.

    PubMed  CAS  Google Scholar 

  41. Gregory, C. W., He, B., Johnson, R. T., Ford, O. H., Mohler, J. L., French, F. S., and Wilson, E. M. (2001) A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 61, 4315–4319.

    PubMed  CAS  Google Scholar 

  42. Chandra, S., Shao, J., Li, J. X., Li, M., Longo, F. M., and Diamond, M. I. (2008) A common motif targets huntingtin and the androgen receptor to the proteasome. J. Biol. Chem. 283, 23950–23955.

    Article  PubMed  CAS  Google Scholar 

  43. Dehm, S. M., Regan, K. M., Schmidt, L. J., and Tindall, D. J. (2007) Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res. 67, 10067–10077.

    Article  PubMed  CAS  Google Scholar 

  44. Hsu, C. L., Chen, Y. L., Yeh, S., Ting, H. J., Hu, Y. C., Lin, H., Wang, X., and Chang, C. (2003) The use of phage display technique for the isolation of androgen receptor interacting peptides with (F/W)XXL(F/W) and FXXLY new signature motifs. J. Biol. Chem. 278, 23691–23698.

    Article  PubMed  CAS  Google Scholar 

  45. van de Wijngaart, D. J., Dubbink, H. J., Molier, M., de Vos, C., Trapman, J., and Jenster, G. (2009) Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression. Mol. Endocrinol. 23, 1776–1786.

    Article  PubMed  Google Scholar 

  46. van de Wijngaart, D. J., van Royen, M. E., Hersmus, R., Pike, A. C., Houtsmuller, A. B., Jenster, G., Trapman, J., and Dubbink, H. J. (2006) Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. J. Biol. Chem. 281, 19407–19416.

    Article  PubMed  Google Scholar 

  47. Burd, C. J., Petre, C. E., Moghadam, H., Wilson, E. M., and Knudsen, K. E. (2005) Cyclin D1 binding to the androgen receptor NH2-terminal domain inhibits AF2 association and reveals dual roles for AR corepression. Mol. Endocrinol. 19, 607–620.

    Article  PubMed  CAS  Google Scholar 

  48. Shenk, J. L., Fisher, C. J., Chen, S. Y., Zhou, X. F., Tillman, K., and Shemshedini, L. (2001) p53 represses androgen-induced transactivation of prostate-specific antigen by disrupting hAR amino- to carboxyl-terminal interaction. J. Biol. Chem. 276, 38472–38479.

    Article  PubMed  CAS  Google Scholar 

  49. Uesugi, M., and Verdine, G. L. (1999) The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc. Natl. Acad. Sci. USA 96, 14801–14806.

    Article  PubMed  CAS  Google Scholar 

  50. Wang, L., Hsu, C. L., Ni, J., Wang, P. H., Yeh, S., Keng, P., and Chang, C. (2004) Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells. Mol. Cell. Biol. 24, 2202–2213.

    Article  PubMed  CAS  Google Scholar 

  51. Ma, Q., Fu, W., Li, P., Nicosia, S. V., Jenster, G., Zhang, X., and Bai, W. (2009) FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment. Mol. Endocrinol. 23, 213–225.

    Article  PubMed  CAS  Google Scholar 

  52. Dotzlaw, H., Moehren, U., Mink, S., Cato, A. C., Iñiguez Lluhí, J. A., and Baniahmad, A. (2002) The amino terminus of the human AR is target for corepressor action and antihormone agonism. Mol. Endocrinol. 16, 661–673.

    Article  PubMed  CAS  Google Scholar 

  53. Liao, G., Chen, L. Y., Zhang, A., Godavarthy, A., Xia, F., Ghosh, J. C., Li, H., and Chen, J. D. (2003) Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT. J. Biol. Chem. 278, 5052–5061.

    Article  PubMed  CAS  Google Scholar 

  54. Cheng, S., Brzostek, S., Lee, S. R., Hollenberg, A. N., and Balk, S. P. (2002) Inhibition of the dihydrotestosterone-activated androgen receptor by nuclear receptor corepressor. Mol. Endocrinol. 16, 1492–1501.

    Article  PubMed  CAS  Google Scholar 

  55. Wu, Y., Kawate, H., Ohnaka, K., Nawata, H., and Takayanagi, R. (2006) Nuclear compartmentalization of N-CoR and its interactions with steroid receptors. Mol. Cell. Biol. 26, 6633–6655.

    Article  PubMed  CAS  Google Scholar 

  56. Bubulya, A., Chen, S. Y., Fisher, C. J., Zheng, Z., Shen, X. Q., and Shemshedini, L. (2001) c-Jun potentiates the functional interaction between the amino and carboxyl termini of the androgen receptor. J. Biol. Chem. 276, 44704–44711.

    Article  PubMed  CAS  Google Scholar 

  57. Schaufele, F., Carbonell, X., Guerbadot, M., Borngraeber, S., Chapman, M. S., Ma, A. A., Miner, J. N., and Diamond, M. I. (2005) The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc. Natl. Acad. Sci. USA 102, 9802–9807.

    Article  PubMed  CAS  Google Scholar 

  58. van Royen, M. E., Cunha, S. M., Brink, M. C., Mattern, K. A., Nigg, A. L., Dubbink, H. J., Verschure, P. J., Trapman, J., and Houtsmuller, A. B. (2007) Compartmentalization of androgen receptor protein-protein interactions in living cells. J. Cell Biol. 177, 63–72.

    Article  PubMed  Google Scholar 

  59. Klokk, T. I., Kurys, P., Elbi, C., Nagaich, A. K., Hendarwanto, A., Slagsvold, T., Chang, C. Y., Hager, G. L., and Saatcioglu, F. (2007) Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol. Cell. Biol. 27, 1823–1843.

    Article  PubMed  CAS  Google Scholar 

  60. Guo, Z., and Eisenberg, D. (2006) Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. Proc. Natl. Acad. Sci. USA 103, 8042–8047.

    Article  PubMed  CAS  Google Scholar 

  61. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E., and Fischbeck, K. H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79.

    Article  PubMed  Google Scholar 

  62. Tetel, M. J., Giangrande, P. H., Leonhardt, S. A., McDonnell, D. P., and Edwards, D. P. (1999) Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol. Endocrinol. 13, 910–924.

    Article  PubMed  CAS  Google Scholar 

  63. Kraus, W. L., McInerney, E. M., and Katzenellenbogen, B. S. (1995) Ligand-dependent, transcriptionally productive association of the amino- and carboxyl-terminal regions of a steroid hormone nuclear receptor. Proc. Natl. Acad. Sci. USA 92, 12314–12318.

    Article  PubMed  CAS  Google Scholar 

  64. Rogerson, F. M. and Fuller, P. J. (2003) Interdomain interactions in the mineralocorticoid receptor. Mol. Cell. Endocrinol. 200, 45–55.

    Article  PubMed  CAS  Google Scholar 

  65. Tung, L., Abdel-Hafiz, H., Shen, T., Harvell, D. M., Nitao, L. K., Richer, J. K., Sartorius, C. A., Takimoto, G. S., and Horwitz, K. B. (2006) Progesterone receptors (PR)-B and -A regulate transcription by different mechanisms: AF-3 exerts regulatory control over coactivator binding to PR-B. Mol. Endocrinol. 20, 2656–2670.

    Article  PubMed  CAS  Google Scholar 

  66. Pippal, J. B., Yao, Y., Rogerson, F. M., and Fuller, P. J. (2009) Structural and functional characterization of the interdomain interaction in the mineralocorticoid receptor. Mol. Endocrinol. 23, 1360–1370.

    Article  PubMed  CAS  Google Scholar 

  67. Murai-Takeda, A., Shibata, H., Kurihara, I., Kobayashi, S., Yokota, K., Suda, N., Mitsuishi, Y., Jo, R., Kitagawa, H., Kato, S., Saruta, T., and Itoh, H. (2010) NF-YC functions as a corepressor of agonist-bound mineralocorticoid receptor. J. Biol. Chem. 285, 8084–8093.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wilson, E.M. (2011). Analysis of Interdomain Interactions of the Androgen Receptor. In: Saatcioglu, F. (eds) Androgen Action. Methods in Molecular Biology, vol 776. Humana Press. https://doi.org/10.1007/978-1-61779-243-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-243-4_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-242-7

  • Online ISBN: 978-1-61779-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics