Skip to main content

Deriving Metabolically Active Hepatic Endoderm from Pluripotent Stem Cells

  • Protocol
  • First Online:
Human Embryonic and Induced Pluripotent Stem Cells

Abstract

The human liver is a vital organ within the body and plays a major role in normal homeostasis. The “work horse” of the liver, termed the “hepatocyte,” is estimated to make up approximately 70–80% of the liver’s mass. Therefore, the study of hepatocyte biology has an important role to play in medicine and the drug discovery process. At present the routine use of human primary hepatocytes is limited due to poor supply and their loss of function upon isolation. Therefore, additional and renewable sources of hepatocytes are being sought. Rodent hepatocytes have been utilised for many years, and although informative, they possess significant limitations and do not accurately extrapolate to human liver. To overcome the issue of cell viability, several groups have tried to generate immortalised hepatocytes; however, the derivative cells exhibit dramatic decreases in function and karyotypic instability over prolonged culture. It has therefore been necessary to find an alternative source of hepatocytes and efficient methods for deriving hepatic endoderm from stem cells in vitro. We have employed human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) to derive human hepatic endoderm (HE). hESCs and iPSCs represent scalable and highly efficient resources with which to generate human HE in vitro, and hESC-derived HE will be the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wege H, Chui MS, Le HT, et al. (2003). In vitro expansion of human hepatocytes is restricted by telomere-dependent replicative aging. Cell Transplant 12: 897–906.

    PubMed  Google Scholar 

  2. Cai J, Ito M, Westerman KA, et al. (2000). Construction of a non-tumorigenic rat hepatocyte cell line for transplantation: reversal of hepatocyte immortalization by site-specific excision of the SV40 T antigen. J Hepatol 33: 701–708.

    Article  PubMed  CAS  Google Scholar 

  3. Allain JE, Dagher I, Mahieu-Caputo D, et al. (2002). Immortalization of a primate bipotent epithelial liver stem cell. Proc Natl Acad Sci USA 99: 3639–3644.

    Article  PubMed  CAS  Google Scholar 

  4. Delgado JP, Parouchev A, Allain JE, et al. (2005). Long-term controlled immortalization of a primate hepatic progenitor cell line after Simian virus 40 T-Antigen gene transfer. Oncogene 24: 541–551.

    Article  PubMed  CAS  Google Scholar 

  5. Turpeinen M, Tolonen A, Chesne C, et al. (2009). Functional expression, inhibition and induction of CYP enzymes in HepaRG cells. Toxicol In Vitro 23: 748–753.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshitomi S, Ikemoto K, Takahashi J, et al. (2001). Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicol In Vitro 15: 245–256.

    Article  PubMed  CAS  Google Scholar 

  7. Herrera MB, Bruno S, Buttiglieri S, et al. (2006). Isolation and characterization of a stem cell population from adult human liver. Stem Cells 24: 2840–2850.

    Article  PubMed  CAS  Google Scholar 

  8. Lazaro CA, Rhim JA, Yamada Y, and Fausto N. (1998). Generation of hepatocytes from oval cell precursors in culture. Cancer Res 58: 5514–5522.

    PubMed  CAS  Google Scholar 

  9. Rogler LE. (1997) Selective bipotential differentiation of mouse embryonic hepatoblasts in vitro. Am J Pathol 150: 591–602.

    PubMed  CAS  Google Scholar 

  10. Reubinoff BE, Pera MF, Fong CY, et al. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18: 399–404.

    Article  PubMed  CAS  Google Scholar 

  11. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi K, and Yamanaka S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.

    Article  PubMed  CAS  Google Scholar 

  13. Dalgetty DM, Medine C, Iredale JP, et al. (2009). Progress and Future Challenges in Stem Cell-Derived Liver Technologies. American Journal of Physiology – Gastrointestinal and Liver Physiology. 2009. 297(2):G241–248.

    Article  CAS  Google Scholar 

  14. Greenhough S, Medine CN, and Hay DC. (2010). Pluripotent Stem Cell Derived Hepatocyte Like Cells and their Potential in ToxicityScreening. Toxicology 278: 250–255

    Article  PubMed  CAS  Google Scholar 

  15. Hay DC. (2010) Cadaveric Hepatocytes Repopulate Diseased Livers: Life After Death. Gastroenterology 139: 715–716

    Article  Google Scholar 

  16. Medine CN, Greenhough S, and Hay DC. (2010). Role of stem-cell-derived hepatic endoderm in human drug discovery. Biochem. Soc. Trans 38: 1033–1036

    Article  PubMed  CAS  Google Scholar 

  17. Agarwal S, Holton KL, Lanza R,  et al. (2008). Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 26: 1117–1127.

    Article  PubMed  CAS  Google Scholar 

  18. Basma H, Soto-Gutierrez A, Yannam G,  et al. (2009). Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Hepatocytes. Gastroenterology 136: 990–999.

    Article  PubMed  CAS  Google Scholar 

  19. Cai J, Zhao Y, Liu Y, et al. (2007). Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45: 1229–1239.

    Article  PubMed  CAS  Google Scholar 

  20. Duan Y, Catana A, Meng Y, et al. (2007). Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25: 3058–3068.

    Article  PubMed  CAS  Google Scholar 

  21. Fletcher J, Cui W, Samuel K, et al. (2008). The inhibitory role of stromal cell mesenchyme on human embryonic stem cell hepatocyte differentiation is overcome by Wnt3a treatment. Cloning Stem Cells 10: 331–339.

    Article  PubMed  CAS  Google Scholar 

  22. Hay DC, Zhao D, Ross A, et al. (2007). Direct differentiation of human embryonic stem cells to hepatocyte-like cells exhibiting functional activities. Cloning Stem Cells 9: 51–62.

    Article  PubMed  CAS  Google Scholar 

  23. Hay DC, Zhao D, Fletcher J, et al. (2008). Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 26: 894–902.

    Article  PubMed  CAS  Google Scholar 

  24. Hay DC, Fletcher J, Payne C, et al. (2008). Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci USA 105: 12301–12306.

    Article  PubMed  CAS  Google Scholar 

  25. Sullivan GJ, Hay DC, Park IH, et al. (2010). Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 51: 329–335.

    PubMed  CAS  Google Scholar 

  26. Hannoun Z, Fletcher J, Greenhough S, et al.(2010). The Comparison between Conditioned Media and Serum-Free Media in Human Embryonic Stem Cell Culture and Differentiation, Cellular Reprogramming, 12:2 133140.

    PubMed  CAS  Google Scholar 

  27. Hay DC, Pernagallo S, Diaz-Mochon JJ, et al (2011). Unbiased Screening of Polymer Libraries to Define Novel Substrates for Functional Hepatocytes with Inducible Drug Metabolism. Stem Cell Research, 6: 92–101.

    Article  PubMed  CAS  Google Scholar 

  28. Payne C.M, Samuel K, Pryde A, et al (2011).Persistence of Functional Hepatocyte Like Cells in Immune Compromised Mice. Liver International, 31(2):254–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Hay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Medine, C.N., Hannoun, Z., Greenhough, S., Payne, C.M., Fletcher, J., Hay, D.C. (2011). Deriving Metabolically Active Hepatic Endoderm from Pluripotent Stem Cells. In: Ye, K., Jin, S. (eds) Human Embryonic and Induced Pluripotent Stem Cells. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-267-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-267-0_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-266-3

  • Online ISBN: 978-1-61779-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics