Skip to main content

Modeling Focal Cerebral Ischemia In Vivo

  • Protocol
  • First Online:
Neurodegeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 793))

Abstract

Ischemic stroke is among the leading causes of mortality and long-term disability in the western world. Despite enormous research activities in the last decades, current therapeutic options for acute stroke patients are still very limited. Reliable and realistic in vivo animal models represent sine qua non for ­successful translation from bench to bedside. To date, several animal models of focal and global cerebral ischemia have been developed to mimic the clinical situation in humans as accurately as possible. This chapter focuses on models of focal cerebral ischemia, in particular on the most commonly used model: the intraluminal filament model of middle cerebral artery occlusion. The main objective is to provide a detailed instruction manual for researchers interested in learning this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Freitas, G. R., Christoph Dde, H., and Bogousslavsky, J. (2008) Chapter 22 Topographic classification of ischemic stroke. Handb Clin Neurol. 93, 425–452.

    Article  Google Scholar 

  2. Koizumi, J., Yoshida, Y., Nakazawa, T., and Oneda, G. (1986) A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemia area. Jpn J of Stroke. 8, 1–8.

    Article  Google Scholar 

  3. Longa, E. Z., Weinstein, P. R., Carlson, S., and Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20, 84–91.

    Article  PubMed  CAS  Google Scholar 

  4. Belayev, L., Alonso, O. F., Busto, R., Zhao, W., and Ginsberg, M. D. (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke. 27, 1616–1622; discussion 1623.

    Google Scholar 

  5. Clark, W. M., Lessov, N. S., Dixon, M. P., and Eckenstein, F. (1997) Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurol Res. 19, 641–648.

    PubMed  CAS  Google Scholar 

  6. Schmid-Elsaesser, R., Zausinger, S., Hungerhuber, E., Baethmann, A., and Reulen, H. J. (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke. 29, 2162–2170.

    Article  PubMed  CAS  Google Scholar 

  7. Tsuchiya, D., Hong, S., Kayama, T., Panter, S. S., and Weinstein, P. R. (2003) Effect of suture size and carotid clip application upon blood flow and infarct volume after permanent and temporary middle cerebral artery occlusion in mice. Brain Res. 970, 131–139.

    Article  PubMed  CAS  Google Scholar 

  8. Hata, R., Mies, G., Wiessner, C., Fritze, K., Hesselbarth, D., Brinker, G., and Hossmann, K. A. (1998) A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab. 18, 367–375.

    Article  PubMed  CAS  Google Scholar 

  9. Tureyen, K., Vemuganti, R., Sailor, K. A., and Dempsey, R. J. (2005) Ideal suture diameter is critical for consistent middle cerebral artery occlusion in mice. Neurosurgery. 56, 196–200; discussion 196–200.

    Google Scholar 

  10. Bederson, J. B., Pitts, L. H., Tsuji, M., Nishimura, M. C., Davis, R. L., and Bartkowski, H. (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 17, 472–476.

    Article  PubMed  CAS  Google Scholar 

  11. Freitag, S., Schachner, M., and Morellini, F. (2003) Behavioral alterations in mice deficient for the extracellular matrix glycoprotein tenascin-R. Behav Brain Res. 145, 189–207.

    Article  PubMed  CAS  Google Scholar 

  12. Ikegami, S., Harada, A., and Hirokawa, N. (2000) Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice. Neurosci Lett. 279, 129–132.

    Article  PubMed  CAS  Google Scholar 

  13. Li, X., Blizzard, K. K., Zeng, Z., DeVries, A. C., Hurn, P. D., and McCullough, L. D. (2004) Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol. 187, 94–104.

    Article  PubMed  Google Scholar 

  14. Zhang, L., Schallert, T., Zhang, Z. G., Jiang, Q., Arniego, P., Li, Q., Lu, M., and Chopp, M. (2002) A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods. 117, 207–214.

    Article  PubMed  Google Scholar 

  15. Lin, T. N., He, Y. Y., Wu, G., Khan, M., and Hsu, C. Y. (1993) Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke. 24, 117–121.

    Article  PubMed  CAS  Google Scholar 

  16. Swanson, R. A., Morton, M. T., Tsao-Wu, G., Savalos, R. A., Davidson, C., and Sharp, F. R. (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 10, 290–293.

    Article  PubMed  CAS  Google Scholar 

  17. Laing, R. J., Jakubowski, J., and Laing, R. W. (1993) Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke. 24, 294–297; discussion 297–298.

    Google Scholar 

  18. Cho, S., Park, E. M., Febbraio, M., Anrather, J., Park, L., Racchumi, G., Silverstein, R. L., and Iadecola, C. (2005) The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J Neurosci. 25, 2504–2512.

    Article  PubMed  CAS  Google Scholar 

  19. Cho, S., Park, E. M., Zhou, P., Frys, K., Ross, M. E., and Iadecola, C. (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab. 25, 493–501.

    Article  PubMed  CAS  Google Scholar 

  20. Kunz, A., Abe, T., Hochrainer, K., Shimamura, M., Anrather, J., Racchumi, G., Zhou, P., and Iadecola, C. (2008) Nuclear factor-kappaB activation and postischemic inflammation are suppressed in CD36-null mice after middle cerebral artery occlusion. J Neurosci. 28, 1649–1658.

    Article  PubMed  CAS  Google Scholar 

  21. Kunz, A., Anrather, J., Zhou, P., Orio, M., and Iadecola, C. (2007) Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J Cereb Blood Flow Metab. 27, 545–551.

    Article  PubMed  CAS  Google Scholar 

  22. Kunz, A., Park, L., Abe, T., Gallo, E. F., Anrather, J., Zhou, P., and Iadecola, C. (2007) Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci. 27, 7083–7093.

    Article  PubMed  CAS  Google Scholar 

  23. Park, E. M., Cho, S., Frys, K., Racchumi, G., Zhou, P., Anrather, J., and Iadecola, C. (2004) Interaction between inducible nitric oxide synthase and poly(ADP-ribose) polymerase in focal ischemic brain injury. Stroke. 35, 2896–2901.

    Article  PubMed  CAS  Google Scholar 

  24. Park, E. M., Cho, S., Frys, K. A., Glickstein, S. B., Zhou, P., Anrather, J., Ross, M. E., and Iadecola, C. (2006) Inducible nitric oxide synthase contributes to gender differences in ischemic brain injury. J Cereb Blood Flow Metab. 26, 392–401.

    Article  PubMed  CAS  Google Scholar 

  25. Abe, T., Shimamura, M., Jackman, K., Kurinami, H., Anrather, J., Zhou, P., and Iadecola, C. Key role of CD36 in Toll-like receptor 2 signaling in cerebral ischemia. Stroke. 41, 898–904.

    Google Scholar 

  26. Crack, P. J., Taylor, J. M., Flentjar, N. J., de Haan, J., Hertzog, P., Iannello, R. C., and Kola, I. (2001) Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem. 78, 1389–1399.

    Article  PubMed  CAS  Google Scholar 

  27. Ducruet, A. F., Hassid, B. G., Mack, W. J., Sosunov, S. A., Otten, M. L., Fusco, D. J., Hickman, Z. L., Kim, G. H., Komotar, R. J., Mocco, J., and Connolly, E. S. (2008) C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. J Cereb Blood Flow Metab. 28, 1048–1058.

    Article  PubMed  CAS  Google Scholar 

  28. Krieger, D. W., and Yenari, M. A. (2004) Therapeutic hypothermia for acute ischemic stroke: what do laboratory studies teach us? Stroke. 35, 1482–1489.

    Article  PubMed  Google Scholar 

  29. McIlvoy, L. H. (2005) The effect of hypothermia and hyperthermia on acute brain injury. AACN Clin Issues. 16, 488–500.

    Article  PubMed  Google Scholar 

  30. Hasegawa, Y., Latour, L. L., Sotak, C. H., Dardzinski, B. J., and Fisher, M. (1994) Temperature dependent change of apparent diffusion coefficient of water in normal and ischemic brain of rats. J Cereb Blood Flow Metab. 14, 383–390.

    Article  PubMed  CAS  Google Scholar 

  31. Ergul, A., Li, W., Elgebaly, M. M., Bruno, A., and Fagan, S. C. (2009) Hyperglycemia, diabetes and stroke: focus on the cerebrovasculature. Vascul Pharmacol. 51, 44–49.

    Article  PubMed  CAS  Google Scholar 

  32. Tureyen, K., Vemuganti, R., Sailor, K. A., and Dempsey, R. J. (2004) Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. J Neurosci Methods. 139, 203–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Iadecola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jackman, K., Kunz, A., Iadecola, C. (2011). Modeling Focal Cerebral Ischemia In Vivo. In: Manfredi, G., Kawamata, H. (eds) Neurodegeneration. Methods in Molecular Biology, vol 793. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-328-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-328-8_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-327-1

  • Online ISBN: 978-1-61779-328-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics