Skip to main content

The Morpheein Model of Allostery: Evaluating Proteins as Potential Morpheeins

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

An equilibrium mixture of alternate quaternary structure assemblies can form a basis for allostery. The morpheein model of allostery is a concerted dissociative model that describes an equilibrium of alternate quaternary structure assemblies whose architectures are dictated by alternate conformations in the dissociated state. Kinetic and biophysical anomalies that suggest that the morpheein model of allostery applies for a given protein of interest are briefly described. Two methods are presented for evaluating proteins as potential morpheeins. One is a subunit interchange method that uses chromatography, dialysis, and mass spectroscopy to monitor changes in multimer composition. The other is a two-dimensional native gel electrophoresis method to monitor ligand-induced changes in an equilibrium of alternate multimeric assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaffe, E. K. (2005) Morpheeins - a new structural paradigm for allosteric regulation, Trends in Biochemical Sciences 30, 490–497.

    Article  PubMed  CAS  Google Scholar 

  2. Erskine, P. T., Senior, N., Awan, S., Lambert, R., Lewis, G., Tickle, L. J., Sarwar, M., Spencer, P., Thomas, P., Warren, M. J., ShoolinginJordan, P. M., Wood, S. P., and Cooper, J. B. (1997) X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase, Nature Structural Biology 4, 1025–1031.

    Article  PubMed  CAS  Google Scholar 

  3. Breinig, S., Kervinen, J., Stith, L., Wasson, A. S., Fairman, R., Wlodawer, A., Zdanov, A., and Jaffe, E. K. (2003) Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase, Nature Structural Biology 10, 757–763.

    Article  PubMed  CAS  Google Scholar 

  4. Tang, L., Stith, L., and Jaffe, E. K. (2005) Substrate-induced interconversion of protein quaternary structure isoforms, Journal of Biological Chemistry 280, 15786–15793.

    Article  PubMed  CAS  Google Scholar 

  5. Kokona, B., Rigotti, D. J., Wasson, A. S., Lawrence, S. H., Jaffe, E. K., and Fairman, R. (2008) Probing the oligomeric assemblies of pea porphobilinogen synthase by analytical ultracentrifugation, Biochemistry 47, 10649–10656.

    Article  PubMed  CAS  Google Scholar 

  6. Ramirez, U. D., Myachina, F., Stith, L., and Jaffe, E. K. (2010) Docking to large allosteric binding sites on protein surfaces, In Advances in Computational Biology, Springer in book series, Advances in Experimental Medicine and Biology 680, 481–488.

    Google Scholar 

  7. Selwood, T., Tang, L., Lawrence, S. H., Anokhina, Y., and Jaffe, E. K. (2008) Kinetics and thermodynamics of the interchange of the morpheein forms of human porphobilinogen synthase, Biochemistry 47, 3245–3257.

    Article  PubMed  CAS  Google Scholar 

  8. Lawrence, S. H., and Jaffe, E. K. (2008) Expanding the Concepts in Protein Structure-Function Relationships and Enzyme Kinetics: Teaching using Morpheeins, Biochem Mol Biol Educ 36, 274–283.

    Article  PubMed  CAS  Google Scholar 

  9. Tang, L., Breinig, S., Stith, L., Mischel, A., Tannir, J., Kokona, B., Fairman, R., and Jaffe, E. K. (2006) Single amino acid mutations alter the distribution of human porphobilinogen synthase quaternary structure isoforms (morpheeins), Journal of Biological Chemistry 281, 6682–6690.

    Article  PubMed  CAS  Google Scholar 

  10. Lawrence, S. H., Ramirez, U. D., Tang, L., Fazliyez, F., Kundrat, L., Markham, G. D., and Jaffe, E. K. (2008) Shape shifting leads to small-molecule allosteric drug discovery, Chem Biol 15, 586–596.

    Article  PubMed  CAS  Google Scholar 

  11. Lawrence, S. H., Ramirez, U. D., Selwood, T., Stith, L., and Jaffe, E. K. (2009) Allosteric inhibition of human porphobilinogen synthase, J Biol Chem 284, 35807–35817.

    Article  PubMed  CAS  Google Scholar 

  12. Jaffe, E. K., and Stith, L. (2007) ALAD porphyria is a conformational disease, American Journal of Human Genetics 80, 329–337.

    Article  PubMed  CAS  Google Scholar 

  13. Shanmugam, D., Wu, B., Ramirez, U., Jaffe, E. K., and Roos, D. S. (2010) Plastid-associated Porphobilinogen Synthase from Toxoplasma gondii - Kinetic and structural properties validate therapeutic potential, Journal of Biological Chemistry 285, 22122–22131.

    Article  PubMed  CAS  Google Scholar 

  14. Frieden, C. (1970) Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept, J Biol Chem 245, 5788–5799.

    PubMed  CAS  Google Scholar 

  15. Naught, L. E., Gilbert, S., Imhoff, R., Snook, C., Beamer, L., and Tipton, P. (2002) Allosterism and cooperativity in Pseudomonas aeruginosa GDP-mannose dehydrogenase, Biochemistry 41, 9637–9645.

    Article  PubMed  CAS  Google Scholar 

  16. Jaffe, E. K., Bagla, S., and Michini, P. A. (1991) Reevaluation of a Sensitive Indicator of Early Lead-Exposure - Measurement of Porphobilinogen Synthase in Blood, Biological Trace Element Research 28, 223–231.

    Article  PubMed  CAS  Google Scholar 

  17. Kervinen, J., Dunbrack, R. L., Litwin, S., Martins, J., Scarrow, R. C., Volin, M., Yeung, A. T., Yoon, E., and Jaffe, E. K. (2000) Porphobilinogen synthase from pea: Expression from an artificial gene, kinetic characterization, and novel implications for subunit interactions, Biochemistry 39, 9018–9029.

    Article  PubMed  CAS  Google Scholar 

  18. Jeffery, C. J. (2009) Moonlighting proteins--an update, Mol Biosyst 5, 345–350.

    Article  PubMed  CAS  Google Scholar 

  19. Karpel, R. L., and Burchard, A. C. (1981) A basic isozyme of yeast glyceraldehyde-3-phosphate dehydrogenase with nucleic acid helix-destabilizing activity, Biochim Biophys Acta 654, 256–267.

    PubMed  CAS  Google Scholar 

  20. Meyer-Siegler, K., Mauro, D. J., Seal, G., Wurzer, J., deRiel, J. K., and Sirover, M. A. (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase, Proc Natl Acad Sci U S A 88, 8460–8464.

    Article  PubMed  CAS  Google Scholar 

  21. Hara, M. R., Cascio, M. B., and Sawa, A. (2006) GAPDH as a sensor of NO stress, Biochim Biophys Acta 1762, 502–509.

    PubMed  CAS  Google Scholar 

  22. Ferreira-da-Silva, F., Pereira, P. J., Gales, L., Roessle, M., Svergun, D. I., Moradas-Ferreira, P., and Damas, A. M. (2006) The crystal and solution structures of glyceraldehyde-3-phosphate dehydrogenase reveal different quaternary structures, J Biol Chem 281, 33433–33440.

    Article  PubMed  CAS  Google Scholar 

  23. Guo, G. G., Gu, M., and Etlinger, J. D. (1994) 240-kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase, J Biol Chem 269, 12399–12402.

    PubMed  Google Scholar 

  24. Gross, M., Hessefort, S., and Olin, A. (1999) Purification of a 38-kDa protein from rabbit reticulocyte lysate which promotes protein renaturation by heat shock protein 70 and its identification as delta-aminolevulinic acid dehydratase and as a putative DnaJ protein, J Biol Chem 274, 3125–3134.

    Article  PubMed  CAS  Google Scholar 

  25. Jaffe, E. K., Ali, S., Mitchell, L. W., Taylor, K. M., Volin, M., and Markham, G. D. (1995) Characterization of the Role of the Stimulatory Magnesium of Escherichia-Coli Porphobilinogen Synthase, Biochemistry 34, 244–251.

    Article  PubMed  CAS  Google Scholar 

  26. Samuel, M. (1995) “PHAST 2D,” a two-dimensional electrophoretic technique on a single gel under native and denaturing conditions using pharmacia PhastSystem, Anal Biochem 224, 457–459.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants R01ES003654 (to E.K.J), R56AI077577 (to E.K.J), and CA006927 (to the Institute for Cancer Research). The authors thank our colleagues Drs. Gregory Adams, Mark Andrake, Erica Golemis and George D. Markham for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen K. Jaffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jaffe, E.K., Lawrence, S.H. (2012). The Morpheein Model of Allostery: Evaluating Proteins as Potential Morpheeins. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics