Skip to main content

AAV-Mediated Gene Targeting

  • Protocol
  • First Online:
Adeno-Associated Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 807))

Abstract

The precise alteration of sequences by homologous recombination is an important strategy for gene therapies as well as investigating gene function and cellular DNA repair pathways. Inefficient delivery of template DNA to the nucleus using transfection or electroporation methods is one limitation of the frequency of homologous recombination in primary cells. AAV vectors can be used to efficiently deliver single stranded DNA recombination templates to the nucleus of primary cells and the AAV genome structure with single DNA strands stabilized by inverted terminal repeat sequences is likely one reason for the increase in recombination frequencies observed. Thus, an AAV-mediated gene targeting approach allows cells from normal or disease-affected individuals to be modified for careful study. When clones of primary cells can be expanded, autologous transplantation of phenotypically corrected cells is also feasible. Here we describe a basic approach to gene targeting using an AAV-mediated strategy. Vector design strategies are discussed, and protocols for altering expressed and non-expressed loci in primary somatic cells, and stem cells are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, G., Vandenberghe, L.H., Alvira, M.R., Lu, Y., Calcedo, R., Zhou, X. and Wilson, J. M. (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388.

    Article  PubMed  CAS  Google Scholar 

  2. Gao, G., Alvira, M.R., Wang, L., Calcedo, R., Johnston, J. and Wilson, J. M. (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad. Sci. U.S.A. 99, 11854–11859.

    Article  PubMed  CAS  Google Scholar 

  3. Nakai, H., Storm, T. and Kay, M. (2000) Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J. Virol. 74, 9451–9463.

    Article  PubMed  CAS  Google Scholar 

  4. Ferrari, F., Samulski, T., Shenk, T. and Samulski, R. (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234.

    PubMed  CAS  Google Scholar 

  5. McCarty, D. M. (2008) Self-complementary aav vectors; advances and applications. Mol. Ther. 16, 1648–1656.

    Article  PubMed  CAS  Google Scholar 

  6. McCarty, D. M., Fu, H., Monahan, P.E., Toulson, C.E., Naik, P. and Samulski, R. J. (2003) Adeno-associated virus terminal repeat (tr) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 10, 2112–2118.

    Article  PubMed  CAS  Google Scholar 

  7. Hirata, R. and Russell, D. (2000) Design and packaging of adeno-associated virus gene targeting vectors. J. Virol. 74, 4612–4620.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, Z., Yant, S., He, C., Meuse, L., Shen, S. and Kay, M. (2001) Linear dnas concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol. Ther. 3, 403–410.

    Article  PubMed  CAS  Google Scholar 

  9. Nakai, H., Yant, S., Storm, T., Fuess, S., Meuse, L. and Kay, M. (2001) Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J. Virol. 75, 6969–6976.

    Article  PubMed  CAS  Google Scholar 

  10. Nakai, H., Wu, X., Fuess, S., Storm, T., Munroe, D., Montini, E., Burgess, S., Grompe, M. and Kay, M. (2005) Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J. Virol. 79, 3606–3614.

    Article  PubMed  CAS  Google Scholar 

  11. Nakai, H., Montini, E., Fuess, S., Storm, T., Grompe, M. and Kay, M. (2003) Aav serotype 2 vectors preferentially integrate into active genes in mice. Nat. Genet. 34, 297–302.

    Article  PubMed  CAS  Google Scholar 

  12. Miller, D., Trobridge, G., Petek, L., Jacobs, M., Kaul, R. and Russell, D. (2005) Large-scale analysis of adeno-associated virus vector ­integration sites in normal human cells. J. Virol. 79, 11434–11442.

    Article  PubMed  CAS  Google Scholar 

  13. Miller, D., Rutledge, E. and Russell, D. (2002) Chromosomal effects of adeno-associated virus vector integration. Nat. Genet. 30, 147–148.

    Article  PubMed  CAS  Google Scholar 

  14. Miller, D., Petek, L. and Russell, D. (2004) Adeno-associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 36, 767–773.

    Article  PubMed  CAS  Google Scholar 

  15. Hirata, R., Chamberlain, J., Dong, R. and Russell, D. (2002) Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat. Biotechnol. 20, 735–738.

    Article  PubMed  CAS  Google Scholar 

  16. Inoue, N., Dong, R., Hirata, R. and Russell, D. (2001) Introduction of single base substitutions at homologous chromosomal sequences by adeno-associated virus vectors. Mol. Ther. 3, 526–530.

    Article  PubMed  CAS  Google Scholar 

  17. Russell, D. and Hirata, R. (1998) Human gene targeting by viral vectors. Nat. Genet. 18, 325–330.

    Article  PubMed  CAS  Google Scholar 

  18. Kohli, M., Rago, C., Lengauer, C., Kinzler, K.W. and Vogelstein, B. (2004) Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res. 32, e3.

    Article  PubMed  Google Scholar 

  19. Chamberlain, J., Schwarze, U., Wang, P., Hirata, R., Hankenson, K., Pace, J., Underwood, R., Song, K., Sussman, M., Byers, P. and Russell, D. (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303, 1198–1201.

    Article  PubMed  CAS  Google Scholar 

  20. Miller, D., Petek, L. and Russell, D. (2003) Human gene targeting by adeno-associated virus vectors is enhanced by dna double-strand breaks. Mol. Cell. Biol. 23, 3550–3557.

    Article  PubMed  CAS  Google Scholar 

  21. Porteus, M., Cathomen, T., Weitzman, M. and Baltimore, D. (2003) Efficient gene targeting mediated by adeno-associated virus and dna double-strand breaks. Mol. Cell. Biol. 23, 3558–3565.

    Article  PubMed  CAS  Google Scholar 

  22. Porteus, M. H. and Carroll, D. (2005) Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973.

    Article  PubMed  CAS  Google Scholar 

  23. Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M.H. and Chandrasegaran, S. (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978–5990.

    Article  PubMed  CAS  Google Scholar 

  24. Bibikova, M., Beumer, K., Trautman, J.K. and Carroll, D. (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.

    Article  PubMed  CAS  Google Scholar 

  25. Deng, C. and Capecchi, M. R. (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371.

    PubMed  CAS  Google Scholar 

  26. Thomas, K. R., Folger, K.R. and Capecchi, M. R. (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428.

    Article  PubMed  CAS  Google Scholar 

  27. Lin, F., Sperle, K. and Sternberg, N. (1985) Recombination in mouse l cells between dna introduced into cells and homologous chromosomal sequences. Proc. Natl. Acad. Sci. U.S.A. 82, 1391–1395.

    Article  PubMed  CAS  Google Scholar 

  28. Yáñez, R. J. and Porter, A. C. G. (2002) A chromosomal position effect on gene targeting in human cells. Nucleic Acids Res. 30, 4892–4901.

    Article  PubMed  Google Scholar 

  29. Inoue, N., Hirata, R. and Russell, D. (1999) High-fidelity correction of mutations at multiple chromosomal positions by adeno-associated virus vectors. J. Virol. 73, 7376–7380.

    PubMed  CAS  Google Scholar 

  30. Russell, D. W. and Hirata, R. K. (2008) Human gene targeting favors insertions over deletions. Hum. Gene Ther. 19, 907–914.

    Article  PubMed  CAS  Google Scholar 

  31. Trobridge, G., Hirata, R. and Russell, D. (2005) Gene targeting by adeno-associated virus vectors is cell-cycle dependent. Hum. Gene Ther. 16, 522–526.

    Article  PubMed  CAS  Google Scholar 

  32. te Riele, H., Maandag, E.R., Clarke, A., Hooper, M. and Berns, A. (1990) Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651.

    Article  Google Scholar 

  33. Mortensen, R. M. (1993) Double knockouts. production of mutant cell lines in cardiovascular research. Hypertension 22, 646–651.

    PubMed  CAS  Google Scholar 

  34. Grim, J. E., Gustafson, M.P., Hirata, R.K., Hagar, A.C., Swanger, J., Welcker, M., Hwang, H.C., Ericsson, J., Russell, D.W. and Clurman, B. E. (2008) Isoform- and cell cycle-dependent substrate degradation by the fbw7 ubiquitin ligase. J. Cell Biol. 181, 913–920.

    Article  PubMed  CAS  Google Scholar 

  35. Bunz, F., Fauth, C., Speicher, M.R., Dutriaux, A., Sedivy, J.M., Kinzler, K.W., Vogelstein, B. and Lengauer, C. (2002) Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 62, 1129–1133.

    PubMed  CAS  Google Scholar 

  36. Petek, L.M., Fleckman, P., Miller, D.G. (2010) Efficient KRT14 Targeting and Functional characterization of transplantal human keratinocytes for the treatment of epidermo­lysis Bullosa simplex Mol. Ther. 18, 1624–1632.

    Google Scholar 

  37. Maniatis, T, Fritsch, EF, Sambrook, J. Molecular cloning, a laboratory manual. Cold Spring Harbor, New York, 1982.

    Google Scholar 

  38. Wang, P., Anton, M., Graham, F.L. and Bacchetti, S. (1995) High frequency recombination between loxp sites in human chromosomes mediated by an adenovirus vector expressing cre recombinase. Somat. Cell Mol. Genet. 21, 429–441.

    Article  PubMed  CAS  Google Scholar 

  39. Vargas, J. J., Gusella, G.L., Najfeld, V., Klotman, M.E. and Cara, A. (2004) Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum. Gene Ther. 15, 361–372.

    Article  PubMed  CAS  Google Scholar 

  40. Grimm, D., Kern, A., Rittner, K. and Kleinschmidt, J. (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 9, 2745–2760.

    Article  PubMed  CAS  Google Scholar 

  41. Clark, K., Liu, X., McGrath, J. and Johnson, P. (1999) Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum. Gene Ther. 10, 1031–1039.

    Article  PubMed  CAS  Google Scholar 

  42. Kaludov, N., Handelman, B. and Chiorini, J. A. (2002) Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography. Hum. Gene Ther. 13, 1235–1243.

    Article  PubMed  CAS  Google Scholar 

  43. Zhou, X. and Muzyczka, N. (1998) In vitro packaging of adeno-associated virus dna. J. Virol. 72, 3241–3247.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Miller, D.G. (2012). AAV-Mediated Gene Targeting. In: Snyder, R., Moullier, P. (eds) Adeno-Associated Virus. Methods in Molecular Biology, vol 807. Humana Press. https://doi.org/10.1007/978-1-61779-370-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-370-7_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-369-1

  • Online ISBN: 978-1-61779-370-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics