Skip to main content

Adeno-Associated Virus Vector Delivery to the Heart

  • Protocol
  • First Online:
Adeno-Associated Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 807))

Abstract

Cardiac gene transfer may serve as a novel therapeutic approach in the treatment of heart disease. For it to reach its full potential, methods for highly efficient cardiac gene transfer must be available to investigators so that informative preclinical data can be collected and evaluated. We have recently optimized AAV-mediated cardiac gene transfer protocols in both the mouse and rat. In the mouse, we have developed a procedure for intrapericardial delivery of vector in the neonate and successfully applied intravenous injections in adult animals. In the rat, we have developed a procedure for direct injection of vector into the myocardium in adults and established a protocol for vector delivery into the left ventricular anterior wall by ultrasound-targeted destruction of microbubbles loaded with AAV. Each protocol can be used to achieve safe and efficient cardiac gene transfer in the model of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaye, D. M., Hoshijima, M., and Chien, K. R. (2008) Reversing advanced heart failure by targeting Ca2+ cycling, Annu Rev Med 59, 13–28.

    Article  PubMed  CAS  Google Scholar 

  2. Lyon, A. R., Sato, M., Hajjar, R. J., Samulski, R. J., and Harding, S. E. (2008) Gene therapy: targeting the myocardium, Heart 94, 89–99.

    Article  PubMed  CAS  Google Scholar 

  3. Vinge, L. E., Raake, P. W., and Koch, W. J. (2008) Gene therapy in heart failure, Circ Res 102, 1458–1470.

    Article  PubMed  CAS  Google Scholar 

  4. Hoshijima, M., Ikeda, Y., Iwanaga, Y., Minamisawa, S., Date, M. O., Gu, Y., Iwatate, M., Li, M., Wang, L., Wilson, J. M., Wang, Y., Ross, J., Jr., and Chien, K. R. (2002) Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery, Nat Med 8, 864–871.

    PubMed  CAS  Google Scholar 

  5. Iwanaga, Y., Hoshijima, M., Gu, Y., Iwatate, M., Dieterle, T., Ikeda, Y., Date, M. O., Chrast, J., Matsuzaki, M., Peterson, K. L., Chien, K. R., and Ross, J., Jr. (2004) Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats, J Clin Invest 113, 727–736.

    PubMed  CAS  Google Scholar 

  6. Kaye, D. M., Preovolos, A., Marshall, T., Byrne, M., Hoshijima, M., Hajjar, R., Mariani, J. A., Pepe, S., Chien, K. R., and Power, J. M. (2007) Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals, J Am Coll Cardiol 50, 253–260.

    Article  PubMed  CAS  Google Scholar 

  7. Sakata, S., Lebeche, D., Sakata, N., Sakata, Y., Chemaly, E. R., Liang, L. F., Tsuji, T., Takewa, Y., del Monte, F., Peluso, R., Zsebo, K., Jeong, D., Park, W. J., Kawase, Y., and Hajjar, R. J. (2007) Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins, J Mol Cell Cardiol 42, 852–861.

    Article  PubMed  CAS  Google Scholar 

  8. Kawase, Y., Ly, H. Q., Prunier, F., Lebeche, D., Shi, Y., Jin, H., Hadri, L., Yoneyama, R., Hoshino, K., Takewa, Y., Sakata, S., Peluso, R., Zsebo, K., Gwathmey, J. K., Tardif, J. C., Tanguay, J. F., and Hajjar, R. J. (2008) Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-­clinical model of heart failure, J Am Coll Cardiol 51, 1112–1119.

    Article  PubMed  CAS  Google Scholar 

  9. Pleger, S. T., Most, P., Boucher, M., Soltys, S., Chuprun, J. K., Pleger, W., Gao, E., Dasgupta, A., Rengo, G., Remppis, A., Katus, H. A., Eckhart, A. D., Rabinowitz, J. E., and Koch, W. J. (2007) Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue, Circulation 115, 2506–2515.

    Article  PubMed  CAS  Google Scholar 

  10. Dandapat, A., Hu, C. P., Li, D., Liu, Y., Chen, H., Hermonat, P. L., and Mehta, J. L. (2008) Overexpression of TGFbeta1 by adeno-­associated virus type-2 vector protects myocardium from ischemia-reperfusion injury, Gene Ther 15, 415–423.

    Article  PubMed  CAS  Google Scholar 

  11. Melo, L. G., Agrawal, R., Zhang, L., Rezvani, M., Mangi, A. A., Ehsan, A., Griese, D. P., Dell’Acqua, G., Mann, M. J., Oyama, J., Yet, S. F., Layne, M. D., Perrella, M. A., and Dzau, V. J. (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene, Circulation 105, 602–607.

    Article  PubMed  CAS  Google Scholar 

  12. Pachori, A. S., Melo, L. G., Zhang, L., Solomon, S. D., and Dzau, V. J. (2006) Chronic recurrent myocardial ischemic injury is significantly attenuated by pre-emptive adeno-associated virus heme oxygenase-1 gene delivery, J Am Coll Cardiol 47, 635–643.

    Article  PubMed  CAS  Google Scholar 

  13. Su, H., Lu, R., and Kan, Y. W. (2000) Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart, Proc Natl Acad Sci U S A 97, 13801–13806.

    Article  PubMed  CAS  Google Scholar 

  14. Su, H., Takagawa, J., Huang, Y., Arakawa-Hoyt, J., Pons, J., Grossman, W., and Kan, Y. W. (2009) Additive effect of AAV-mediated angiopoietin-1 and VEGF expression on the therapy of infarcted heart, Int J Cardiol 133, 191–197.

    Article  PubMed  Google Scholar 

  15. Dobrucki, L. W., Tsutsumi, Y., Kalinowski, L., Dean, J., Gavin, M., Sen, S., Mendizabal, M., Sinusas, A. J., and Aikawa, R. (2009) Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging, J Mol Cell Cardiol.

    Google Scholar 

  16. Bostick, B., Yue, Y., Lai, Y., Long, C., Li, D., and Dongsheng, D. (2008) AAV-9 micro-dystrophin gene therapy ameliorates electrocardiographic abnormalities in mdx mice, Hum Gene Ther.

    Google Scholar 

  17. Goehringer, C., Rutschow, D., Bauer, R., Schinkel, S., Weichenhan, D., Bekeredjian, R., Straub, V., Kleinschmidt, J. A., Katus, H. A., and Muller, O. J. (2009) Prevention of cardiomyopathy in delta-sarcoglycan knockout mice after systemic transfer of targeted adeno-associated viral vectors, Cardiovasc Res 82, 404–410.

    Article  PubMed  CAS  Google Scholar 

  18. Ogawa, K., Hirai, Y., Ishizaki, M., Takahashi, H., Hanawa, H., Fukunaga, Y., and Shimada, T. (2009) Long-term inhibition of glycosphingolipid accumulation in Fabry model mice by a single systemic injection of AAV1 vector in the neonatal period, Mol Genet Metab 96, 91–96.

    Article  PubMed  CAS  Google Scholar 

  19. Sun, B., Young, S. P., Li, P., Di, C., Brown, T., Salva, M. Z., Li, S., Bird, A., Yan, Z., Auten, R., Hauschka, S. D., and Koeberl, D. D. (2008) Correction of multiple striated muscles in murine Pompe disease through adeno-­associated virus-mediated gene therapy, Mol Ther 16, 1366–1371.

    Article  PubMed  CAS  Google Scholar 

  20. Merritt, J. L., 2nd, Nguyen, T., Daniels, J., Matern, D., and Schowalter, D. B. (2009) Biochemical correction of very long-chain acyl-CoA dehydrogenase deficiency following adeno-associated virus gene therapy, Mol Ther 17, 425–429.

    Article  PubMed  CAS  Google Scholar 

  21. Palomeque, J., Chemaly, E. R., Colosi, P., Wellman, J. A., Zhou, S., Del Monte, F., and Hajjar, R. J. (2007) Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo, Gene Ther 14, 989–997.

    Article  PubMed  CAS  Google Scholar 

  22. Inagaki, K., Fuess, S., Storm, T. A., Gibson, G. A., McTiernan, C. F., Kay, M. A., and Nakai, H. (2006) Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8, Mol Ther 14, 45–53.

    Article  PubMed  CAS  Google Scholar 

  23. Pacak, C. A., Mah, C. S., Thattaliyath, B. D., Conlon, T. J., Lewis, M. A., Cloutier, D. E., Zolotukhin, I., Tarantal, A. F., and Byrne, B. J. (2006) Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo, Circ Res 99, e3-9.

    Article  PubMed  CAS  Google Scholar 

  24. Bostick, B., Ghosh, A., Yue, Y., Long, C., and Duan, D. (2007) Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration, Gene Ther 14, 1605–1609.

    Article  PubMed  CAS  Google Scholar 

  25. Zincarelli, C., Soltys, S., Rengo, G., and Rabinowitz, J. E. (2008) Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection, Mol Ther 16, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  26. Katz, M. G., Swain, J. D., Low, D., White, J. D., Stedman, H. H., and Bridges, C. R. (2009) Cardiac Gene Therapy: Optimization of Gene Delivery Techniques in Vivo, Hum Gene Ther.

    Google Scholar 

  27. Bish, L. T., Sleeper, M.M., Sweeney, H.L. (2011) Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 in the canine, Methods Mol Biol 709, 369–78.

    Google Scholar 

  28. Raake, P. W., Hinkel, R., Muller, S., Delker, S., Kreuzpointner, R., Kupatt, C., Katus, H. A., Kleinschmidt, J. A., Boekstegers, P., and Muller, O. J. (2008) Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors, Gene Ther 15, 12–17.

    Article  PubMed  CAS  Google Scholar 

  29. Vandendriessche, T., Thorrez, L., Acosta-Sanchez, A., Petrus, I., Wang, L., Ma, L., L, D. E. W., Iwasaki, Y., Gillijns, V., Wilson, J. M., Collen, D., and Chuah, M. K. (2007) Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy, J Thromb Haemost 5, 16–24.

    Google Scholar 

  30. Bish, L. T., Morine, K., Sleeper, M. M., Sanmiguel, J., Wu, D., Gao, G., Wilson, J. M., and Sweeney, H. L. (2008) Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat, Hum Gene Ther 19, 1359–1368.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, J. C., Woo, Y. J., Chen, J. A., Swain, J. L., and Sweeney, H. L. (1999) Efficient transmural cardiac gene transfer by intrapericardial injection in neonatal mice, J Mol Cell Cardiol 31, 721–732.

    Article  PubMed  CAS  Google Scholar 

  32. Andino, L. M., Takeda, M., Kasahara, H., Jakymiw, A., Byrne, B. J., and Lewin, A. S. (2008) AAV-mediated knockdown of phospholamban leads to improved contractility and ­calcium handling in cardiomyocytes, J Gene Med 10, 132–142.

    Article  PubMed  CAS  Google Scholar 

  33. Yue, Y., Li, Z., Harper, S. Q., Davisson, R. L., Chamberlain, J. S., and Duan, D. (2003) Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein ­complex and improves sarcolemma integrity in the mdx mouse heart, Circulation 108, 1626–1632.

    Article  PubMed  CAS  Google Scholar 

  34. Muller, O. J., Leuchs, B., Pleger, S. T., Grimm, D., Franz, W. M., Katus, H. A., and Kleinschmidt, J. A. (2006) Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors, Cardiovasc Res 70, 70–78.

    Article  PubMed  Google Scholar 

  35. Shohet, R. V., Chen, S., Zhou, Y. T., Wang, Z., Meidell, R. S., Unger, R. H., and Grayburn, P. A. (2000) Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium, Circulation 101, 2554–2556.

    PubMed  CAS  Google Scholar 

  36. Bekeredjian, R., Chen, S., Frenkel, P. A., Grayburn, P. A., and Shohet, R. V. (2003) Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart, Circulation 108, 1022–1026.

    Article  PubMed  Google Scholar 

  37. Chen, S., Shohet, R. V., Bekeredjian, R., Frenkel, P., and Grayburn, P. A. (2003) Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction, J Am Coll Cardiol 42, 301–308.

    Article  PubMed  CAS  Google Scholar 

  38. Muller, O. J., Schinkel, S., Kleinschmidt, J. A., Katus, H. A., and Bekeredjian, R. (2008) Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats, Gene Ther 15, 1558–1565.

    Article  PubMed  CAS  Google Scholar 

  39. Bekeredjian, R., Kroll, R. D., Fein, E., Tinkov, S., Coester, C., Winter, G., Katus, H. A., and Kulaksiz, H. (2007) Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas, Ultrasound Med Biol 33, 1592–1598.

    Article  PubMed  Google Scholar 

  40. Geis, N. A., Mayer, C. R., Kroll, R. D., Hardt, S. E., Katus, H. A., and Bekeredjian, R. (2009) Spatial distribution of ultrasound targeted microbubble destruction increases cardiac transgene expression but not capillary permeability, Ultrasound Med Biol 35, 1119–1126.

    Article  PubMed  Google Scholar 

  41. Matsuda, T., Fukuo, Y., Shinohara, H., Morisawa, S., and Nakatani, T. (1990) The postnatal development of the mouse pericardium; the time and mechanism of formation of pericardial pores, Okajimas Folia Anat Jpn 67, 115–120.

    PubMed  CAS  Google Scholar 

  42. Nakatani, T., Shinohara, H., Fukuo, Y., Morisawa, S., and Matsuda, T. (1988) Pericardium of rodents: pores connect the pericardial and pleural cavities, Anat Rec 220, 132–137.

    Article  PubMed  CAS  Google Scholar 

  43. Liu, Y. H., Yang, X. P., Nass, O., Sabbah, H. N., Peterson, E., and Carretero, O. A. (1997) Chronic heart failure induced by coronary artery ligation in Lewis inbred rats, Am J Physiol 272, H722–727.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the NHLBI (P01-HL059407 to HLS) and by TG-HL-007748 to LTB. Further support was obtained by a grant of the Deutsche Forschungsgemeinschaft (MU 1654/3-2) and the Bundesministerium für Bildung und Forschung (01GU0527) to OJM as well as by the BioFuture grant of the Bundesministerium für Bildung und Forschung to RB. We thank Stefanie Schinkel for her help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lee Sweeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bish, L.T., Sweeney, H.L., Müller, O.J., Bekeredjian, R. (2012). Adeno-Associated Virus Vector Delivery to the Heart. In: Snyder, R., Moullier, P. (eds) Adeno-Associated Virus. Methods in Molecular Biology, vol 807. Humana Press. https://doi.org/10.1007/978-1-61779-370-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-370-7_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-369-1

  • Online ISBN: 978-1-61779-370-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics