Skip to main content

Polypyrrole-Oligosaccharide Microarray for the Measurement of Biomolecular Interactions by Surface Plasmon Resonance Imaging

  • Protocol
  • First Online:
Carbohydrate Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 808))

Abstract

The polypyrrole approach initially developed for the construction of DNA chips, has been extended to other biochemical compounds such as proteins and more recently oligosaccharides. The copolymerization of a pyrrole monomer with a biomolecule bearing a pyrrole group by an electrochemical process allows a very fast coupling of the biomolecule (probe) to a gold layer used as a working electrode. Fluorescence-based detection is the reference method to detect interactions on biochips; however an alternative label free method, could be more convenient for rapid screening of biointeractions. Surface Plasmon Resonance (SPRi) is a typical label-free method for real time detection of the binding of biological molecules onto functionalized surfaces. This surface sensitive optical method is based upon evanescent wave sensing on a thin metal layer. The SPR approach described herein is performed in an imaging geometry that allows simultaneous monitoring of biorecognition reactions occurring on an array of immobilized probes (chip). In a SPR imaging experiment, local changes in the reflectivity are recorded with a CCD camera and are exploited to monitor up to 100 different biological reactions occurring onto the molecules linked to the polypyrrole matrix. This method will be applied to oligosaccharide recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995): 767–73

    Article  PubMed  CAS  Google Scholar 

  2. R. Frank (1992) Spot synthesis of peptides on membrane supports. Tetrahedron 48:9217–32

    Article  CAS  Google Scholar 

  3. Ban L, Mrksich M (2008) On-chip synthesis and label-free assays of oligosaccharide arrays. Angew Chem Int Ed Engl 47(18):3396–9

    Article  PubMed  CAS  Google Scholar 

  4. Kiessling LL, Splain RA (2010) Chemical approaches to glycobiology. Annu Rev Biochem 79:619–53

    Article  PubMed  CAS  Google Scholar 

  5. Lepenies B, Yin J, Seeberger PH (2010) Applications of synthetic carbohydrates to chemical biology. Curr Opin Chem Biol 14(3):404–11

    Article  PubMed  CAS  Google Scholar 

  6. Weijers CA, Franssen MC, Visser GM (2008) Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 26(5):436–56

    Article  PubMed  CAS  Google Scholar 

  7. Angenendt P, Glökler J, Murphy D, Lehrach H, Cahill DJ (2002) Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem 309(2):253–60

    Article  PubMed  CAS  Google Scholar 

  8. Livache T, Guedon P, Brakha C, Roget A, Levy Y and Bidan G (2001) Polypyrrole electrospotting for the construction of oligonucleotide arrays compatible with a surface plasmon ­resonance hybridization detection. Synth. Met 121 (2–3):1443–1444

    Article  CAS  Google Scholar 

  9. Sarrazin S, Bonnaffé D, Lubineau A, Lortat-Jacob H (2005) Heparan sulfate mimicry: a synthetic glycoconjugate that recognizes the heparin binding domain of interferon-gamma inhibits the cytokine activity. J Biol. Chem 280:37558–64

    Article  PubMed  CAS  Google Scholar 

  10. Laguri C, Sadir R, Rueda P, Baleux F, Gans P, Arenzana-Seisdedos F and Lortat-Jacob H (2007) The novel CXCL12γ isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4. PLoS One 2, e1110

    Article  PubMed  Google Scholar 

  11. Jirkowski I. and Baudy R (1981) A facile large scale preparation of 1H-pyrrole-1-ethanamine and syntheses of substituted pyrrolo[1,2-a]pyrazines and hydro derivatives thereof. Synthesis 481–483

    Google Scholar 

  12. Emiliano Gemma, Odile Meyer, Dušan Uhrín and Alison N. Hulme (2008) Enabling methodology for the end functionalisation of glycosaminoglycan oligosaccharides. Mol. BioSyst 4:481–95

    Article  PubMed  CAS  Google Scholar 

  13. Guedon P, Livache T, Martin F, Lesbre F, Roget A, Bidan G, Levy Y (2000) Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal Chem 72:6003–9

    Article  PubMed  CAS  Google Scholar 

  14. Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed Engl 41:391–412

    Article  PubMed  Google Scholar 

  15. Mercey E, Sadir R, Maillart E, Roget A, Baleux F, Lortat-Jacob H, Livache T (2008) Polypyrrole Oligosaccharide Array and Surface Plasmon Resonance Imaging for the Measurement of Glycosaminoglycan Binding Interactions. Anal Chem 80:3476–82

    Article  PubMed  CAS  Google Scholar 

  16. Sadir R, Baleux F, Grosdidier A, Imberty A, Lortat-Jacob H (2001) Characterization of the stromal cell-derived factor-1alpha-heparin complex. J Biol Chem 276:8288–96

    Article  PubMed  CAS  Google Scholar 

  17. Sadir R, Forest E, Lortat-Jacob H (1998) The heparan sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma-interferon-gamma receptor complex formation. J Biol Chem 273:10919–25

    Article  PubMed  CAS  Google Scholar 

  18. Lortat-Jacob H, Brisson C, Guerret S, Morel G (1996) Non-receptor-mediated tissue localization of human interferon-gamma: role of heparan sulfate/heparin-like molecules. Cytokine 8:557–66

    Article  PubMed  CAS  Google Scholar 

  19. Lortat-Jacob H, Turnbull JE, Grimaud JA (1995) Molecular organization of the interferon-gamma-binding domain in heparan sulfate. Biochem J 310:497–505

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thanks H. Lortat-Jacob’s group at the “Institut de Biologie Structurale” – Grenoble for the preparation of recombinant IFNγ and SDF-1α, and the “CREAB” group for their technical support with the microarrayer and SRPi apparatus. This work has been partially granted by the Carbinfec project from FUI and Lyonbiopôle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Roget .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bartoli, J., Roget, A., Livache, T. (2012). Polypyrrole-Oligosaccharide Microarray for the Measurement of Biomolecular Interactions by Surface Plasmon Resonance Imaging. In: Chevolot, Y. (eds) Carbohydrate Microarrays. Methods in Molecular Biology, vol 808. Humana Press. https://doi.org/10.1007/978-1-61779-373-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-373-8_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-372-1

  • Online ISBN: 978-1-61779-373-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics