Skip to main content

Mass Spectrometry for Protein Quantification in Biomarker Discovery

  • Protocol
  • First Online:
Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 815))

Abstract

Major technological advances have made proteomics an extremely active field for biomarker discovery in recent years due primarily to the development of newer mass spectrometric technologies and the explosion in genomic and protein bioinformatics. This leads to an increased emphasis on larger scale, faster, and more efficient methods for detecting protein biomarkers in human tissues, cells, and biofluids. Most current proteomic methodologies for biomarker discovery, however, are not highly automated and are generally labor-intensive and expensive. More automation and improved software programs capable of handling a large amount of data are essential to reduce the cost of discovery and to increase throughput. In this chapter, we discuss and describe mass spectrometry-based proteomic methods for quantitative protein analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackstock, W. P. and Weir, M. P. (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17, 121–127.

    Article  PubMed  CAS  Google Scholar 

  2. Gygi, S. P., Rist, B., and Aebersold, R. (2000) Measuring gene expression by quantitative proteome analysis. Curr. Opin. Biotechnol. 11, 396–401.

    Article  PubMed  CAS  Google Scholar 

  3. Rabilloud, T. (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3–10.

    Article  PubMed  CAS  Google Scholar 

  4. Conrads, T. P., Issaq, H. J., and Veenstra, T. D. (2002) New tools for quantitative phosphoproteome analysis. Biochem. Biophys. Res. Commun. 290, 885–890.

    Article  PubMed  CAS  Google Scholar 

  5. Ong, S. E., Foster, L. J., and Mann, M. (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29, 124–130.

    Article  PubMed  CAS  Google Scholar 

  6. Tao, W. A. and Aebersold, R. (2003) Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr. Opin. Biotechnol. 14, 110–118.

    Article  PubMed  CAS  Google Scholar 

  7. McDonald, W. H. and Yates, J. R., 3 rd. (2002) Shotgun proteomics and biomarker discovery. Dis. Markers 18, 99–105.

    PubMed  CAS  Google Scholar 

  8. Wu, C. C., MacCoss, M. J., Howell, K. E., and Yates, J. R., 3 rd. (2003) A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol. 21, 532–538.

    Article  PubMed  CAS  Google Scholar 

  9. Washburn, M. P., Ulaszek, R., Deciu, C., Schieltz, D. M., and Yates, J. R., 3 rd. (2002) Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 74, 1650–1657.

    Article  PubMed  CAS  Google Scholar 

  10. Washburn, M. P., Wolters, D., and Yates, J. R., 3 rd. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.

    Article  PubMed  CAS  Google Scholar 

  11. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.

    Article  PubMed  CAS  Google Scholar 

  12. Yan, W. and Chen, S. S. (2005) Mass spectrometry-based quantitative proteomic profiling. Brief. Funct. Genomic. Proteomics 4, 27–38.

    Article  CAS  Google Scholar 

  13. Zhang, B., VerBerkmoes, N. C., Langston, M. A., Uberbacher, E., Hettich, R. L., and Samatova, N. F. (2006) Detecting differential and correlated protein expression in label-free shotgun proteomics. J. Proteome Res. 5, 2909–2918.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, G., Wu, W. W., Zeng, W., Chou, C-L., and Shen, R-F. (2006) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity, and application with complex proteomes. J. Proteome Res. 5, 1214–1223.

    Article  PubMed  CAS  Google Scholar 

  15. Ono, M., Shitashige, M., Honda, K., Isobe, T., Kuwabara, H., Matsuzuki, H., et al. (2006) Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol. Cell. Proteomics 5, 1338–1347.

    Article  PubMed  CAS  Google Scholar 

  16. Li, J., Steen, H., and Gygi, S. P. (2003) Protein Profiling with Cleavable Isotope-coded Affinity Tag (cICAT) Reagents: The Yeast Salinity Stress Response. Mol. Cell. Proteomics 2, 1198–1204.

    Article  PubMed  CAS  Google Scholar 

  17. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., et al. (2004) Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents. Mol. Cell. Proteomics 3, 1154–1169.

    Article  PubMed  CAS  Google Scholar 

  18. Oda, Y., Huang, K., Cross, F. R., Cowburn, D., and Chait, B. T. (1999) Accurate Quantitation of Protein Expression and Site-Specific Phosphorylation. Proc. Natl. Acad. Sci. USA. 96, 6591–6596.

    Article  PubMed  CAS  Google Scholar 

  19. Ong, S., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., et al. (2002) Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Mol. Cell. Proteomics 1, 376–386.

    Article  PubMed  CAS  Google Scholar 

  20. Ong, S., Kratchmarova, I., and Mann, M. (2003) Properties of 13C-substituted Arginine in Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). J. Proteome Res. 2, 173–181.

    Article  PubMed  CAS  Google Scholar 

  21. Moulder, R., Lonnberg, T., Elo, L. L., Filen, J. J., Rainio, E., Corthals, G., et al. (2010) Quantitative proteomics analysis of the nuclear fraction of human CD4+ cells in the early phases of IL-4-induced Th2 differentiation. Mol. Cell. Proteomics 9, 1937–1953.

    Article  PubMed  CAS  Google Scholar 

  22. Collier, T. S., Sarkar, P., Rao, B., and Muddiman, D. C. (2010) Quantitative Top-down Proteomics of SILAC Labeled Human Embryonic Stem Cells. J. Am. Soc. Mass. Spectrom. 21, 879–889.

    Article  PubMed  CAS  Google Scholar 

  23. Imami, K., Sugiyama, N., Tomita, M., and Ishihama, Y. (2010) Quantitative proteome and phosphoproteome analyses of cultured cells based on SILAC labeling without requirement of serum dialysis. Mol. Biosyst. 6, 594–602.

    Article  PubMed  CAS  Google Scholar 

  24. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., and Gygi, S. P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA. 100, 6940–6945.

    Article  PubMed  CAS  Google Scholar 

  25. Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245.

    Article  PubMed  CAS  Google Scholar 

  26. Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., et al. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 4, 1265–1272.

    Article  PubMed  CAS  Google Scholar 

  27. Lu, P., Vogel, C., Wang, R., Yao, X., and Marcotte, E. M. (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25, 117–124.

    Article  PubMed  CAS  Google Scholar 

  28. Griffin, T. J., Lock, C. M., Li, X. J., Patel, A., Chervetsova, I., Lee, H., et al. (2003) Abundance ratio-dependent proteomic analysis by mass spectrometry. Anal. Chem. 75, 867–874.

    Article  PubMed  CAS  Google Scholar 

  29. Bondarenko, P. V., Chelius, D., and Shaler, T. A. (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal. Chem. 74, 4741–4749.

    Article  PubMed  CAS  Google Scholar 

  30. Chelius, D., and Bondarenko, P. V. (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J. Proteome Res. 1, 317–323.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T., Hill, L., et al. (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 75, 4818–4826.

    Article  PubMed  CAS  Google Scholar 

  32. Bantscheff, M. and Schirle, M. (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031.

    Article  PubMed  CAS  Google Scholar 

  33. Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K. G., Mendoza, A., Sevinsky, J. R., et al. (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487–1502.

    Article  PubMed  CAS  Google Scholar 

  34. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  35. Hill, H. D. and Straka, J. G. (1988) Protein determination using bicinchoninic acid in the presence of surfhydryl reagents. Anal. Biochem. 170, 203–208.

    Article  PubMed  CAS  Google Scholar 

  36. Hale, J. E., Butler, J. P., Gelfanova, V., You, J. S., and Knierman, M. D. (2004) A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Anal. Biochem. 333, 174–181.

    Article  PubMed  CAS  Google Scholar 

  37. Higgs, R. E., Knierman, M. D., Freeman, A. B., Gelbert, L. M., Patil, S. T., and Hale, J. E. (2007) Estimating the statistical significance of peptide identifications from shotgun proteomics experiments. J. Proteome Res. 6, 1758–1767.

    Article  PubMed  CAS  Google Scholar 

  38. Higgs, R.E., Knierman, M.D., Gelfanova, V., Butler, J.P., and Hale, J.E. (2005) Comprehensive label-free method for the relative quantification of proteins from biological samples. J. Proteome Res. 4, 1442–1450.

    Article  PubMed  CAS  Google Scholar 

  39. Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K., and Nesvizhskii, A. (2004) The need for guidelines in publication of peptide and protein identification data: Working Group on Publication Guidelines for Peptide and Protein Identification Data. Mol. Cell. Proteomics 3, 531–533.

    Article  PubMed  CAS  Google Scholar 

  40. Shadforth, I. P., Dunkley, T. P., Lilley, K. S., and Bessant, C. (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6, 145–150.

    Article  PubMed  Google Scholar 

  41. Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193.

    Article  PubMed  CAS  Google Scholar 

  42. Limpert, E., Stahel, W. A., Abbt, M. (2001) Log-normal Distributions across the Sciences: Keys and Clues. BioScience 51, 341–352.

    Article  Google Scholar 

  43. Zybailov, B., Coleman, M. K., Florens, L., and Washburn, M. P. (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal. Chem. 77, 6218–6224.

    Article  PubMed  CAS  Google Scholar 

  44. Florens, L., Carozza, M. J., Swanson, S. K., Fournier, M., Coleman. M. K., Workman, J. L., et al. (2006) Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40, 303–311.

    Article  PubMed  CAS  Google Scholar 

  45. Pang, J. X., Ginanni, N., Dongre, A. R., Hefta, S. A., and Opiteck, G. J. (2002) Biomarker discovery in urine by proteomics. J. Proteome Res. 1, 161–169.

    Article  PubMed  CAS  Google Scholar 

  46. Rao, P. V., Reddy, A. P., Lu, X., Dasari, S., Krishnaprasad, A., Biggs, E., et al. (2009) Proteomic identification of salivary biomarkers of type-2 diabetes. J. Proteome Res. 8, 239–245.

    Article  PubMed  CAS  Google Scholar 

  47. Pan, J., Chen, H. Q., Sun, Y. H., Zhang, J. H., and Luo, X. Y. (2008) Comparative proteomic analysis of non-small-cell lung cancer and normal controls using serum label-free quantitative shotgun technology. Lung 186, 255–261.

    Article  PubMed  CAS  Google Scholar 

  48. Asara, J. M., Christofk, H. R., Freimark, L. M., and Cantley, L. C. (2008) A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 8, 994–999.

    Article  PubMed  CAS  Google Scholar 

  49. Seyfried, N. T., Huysentruyt, L. C., Atwood III, J. A., Xia, Q., Seyfried, T. N., and Orlando, R. (2008) Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach. Cancer Letters 263, 243–252.

    Article  PubMed  CAS  Google Scholar 

  50. Liu, H., Sadygov, R. G., and Yates, J. R., III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201.

    Article  PubMed  CAS  Google Scholar 

  51. Dong, M. Q., Venable, J. D., Au, N., Xu, T., Park, S. K., Cociorva, D., et al. (2007) Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317 (5838), 660–663.

    Google Scholar 

  52. Zhang, B., VerBerkmoes, N. C., Langston, M. A., Uberbacher, E., Hettich, R. L., and Samatova, N. F. (2006) Detecting differential and correlated protein expression in label-free shotgun proteomics. J. Proteome Res. 5, 2909–2918.

    Article  PubMed  CAS  Google Scholar 

  53. Reiner, A., Yekutieli, D., and Benjamini, Y. (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368–375.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang, R., Sioma, C. S., Wang, S., and Regnier, F. E. (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal. Chem. 73, 5142–5149.

    Article  PubMed  CAS  Google Scholar 

  55. Yang, Y. H. and Speed, T. (2003) Design issues for cDNA microarray experiments. Nat. Rev. Genet. 19, 649–659.

    Google Scholar 

  56. Simon, R., Radmacher, M. D., and Dobbin, K. (200) Design of studies using DNA microarrays. Genet Epidemilo. 23, 21–36.

    Google Scholar 

  57. Zybailov, B., Mosley, A. L., Sardiu, M. E., Coleman, M. K., Florens, L., and Washburn, M. P. (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347.

    Article  PubMed  CAS  Google Scholar 

  58. Paoletti, A. C., Parmely, T. J., Tomomori-Sato, C., Sato, S., Zhu, D., Conaway, R. C., et al. (2006) Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc. Natl. Acad. Sci. USA. 103, 18928–18933.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Ms. Heather Sahm for critical reading of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, M., You, J. (2012). Mass Spectrometry for Protein Quantification in Biomarker Discovery. In: Kaufmann, M., Klinger, C. (eds) Functional Genomics. Methods in Molecular Biology, vol 815. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-424-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-424-7_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-423-0

  • Online ISBN: 978-1-61779-424-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics