Skip to main content

Transgenic Techniques for Cell Ablation or Molecular Deletion to Investigate Functions of Astrocytes and Other GFAP-Expressing Cell Types

  • Protocol
  • First Online:
Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 814))

Abstract

Genetic tools are enabling the molecular dissection of the functions and mechanisms of many biological processes. Transgenic manipulations provide powerful tools with which to test hypotheses regarding functions of specific cell types and molecules in vivo in combination with different types of experimental models. Various techniques are available that can target genetic manipulations specifically to astrocytes and that are enabling the molecular dissection of astrocyte biology in vivo. This article summarizes procedures and experience from our laboratory using transgenic strategies that enable either the ablation of proliferating astrocytes and related cells, or the deletion of specific molecules selectively from astrocytes, to study the functions of astrocytes and related cell types in health and disease in vivo using different experimental mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sofroniew, M. V. (2009) Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci. 32, 638–647.

    Article  PubMed  CAS  Google Scholar 

  2. Sofroniew, M. V., and Vinters, H. V. (2010) Astrocytes: biology and pathology, Acta Neuropathol 119, 7–35.

    Article  PubMed  Google Scholar 

  3. Borrelli, E., Heyman, R., Hsi, M., and Evans, R. M. (1988) Targetting of an inducible toxic phenotype in animal cells, Proc. Natl. Acad. Sci. USA 85, 7572–7576.

    Article  PubMed  CAS  Google Scholar 

  4. Bush, T. G., N., P., Horner, C. H., Polito, A., Ostenfeld, T., Svendsen, C. N., Mucke, L., Johnson, M. H., and Sofroniew, M. V. (1999) Leukocyte infiltration, neuronal degeneration and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice, Neuron 23, 297–308.

    Google Scholar 

  5. Bush, T. G., Savidge, T. C., Freeman, T. C., Cox, H. J., Campbell, E. A., Mucke, L., Johnson, M. H., and Sofroniew, M. V. (1998) Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice, Cell 93, 189–201.

    Article  PubMed  CAS  Google Scholar 

  6. Borrelli, E., Heyman, R. A., Arias, C., Sawchenko, P. E., and Evans, R. M. (1989) Transgenic mice with inducible dwarfism, Nature 339, 538–541.

    Article  PubMed  CAS  Google Scholar 

  7. Fischer, U., Steffens, S., Frank, S., Rainov, N. G., Schulze-Osthoff, K., and Kramm, C. M. (2005) Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells, Oncogene 24, 1231–1243.

    Article  PubMed  CAS  Google Scholar 

  8. Sauer, B. (1994) Site-specific recombination: developments and applications, Curr. Opin. Biotech. 5, 521–527.

    Article  PubMed  CAS  Google Scholar 

  9. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain, Nature Genetics 21, 70–71.

    Article  PubMed  CAS  Google Scholar 

  10. Johnson, W. B., Ruppe, M. D., Rockenstein, E. M., Price, J., Sarthy, V. P., Vederber, L. C., and Mucke, L. (1995) Indicator expression directed by regulatory sequences of the glial fibrillary acidic protein (GFAP) gene: in vitro comparison of distinct GFAP-lacZ transgenes, Glia 13, 174–184.

    Article  PubMed  CAS  Google Scholar 

  11. Bunting, M., Bernstein, K., Greer, J., Capecchi, M., and Thomas, K. (1999) Targeting genes for self-excision in the germ line, Genes Dev. 13, 1524–1528.

    Article  PubMed  CAS  Google Scholar 

  12. Garcia, A. D. R., Doan, N. B., Imura, T., Bush, T. G., and Sofroniew, M. V. (2004) GFAP-expressing progenitors are the principle source of constitutive neurogenesis in adult mouse forebrain, Nature Neurosci. 7, 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  13. Faulkner, J. R., Herrmann, J. E., Woo, M. J., Tansey, K. E., Doan, N. B., and Sofroniew, M. V. (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury, J. Neurosci. 24, 2143–2155.

    Article  PubMed  CAS  Google Scholar 

  14. Al-Shawi, R., Burke, J., Jones, C. T., Simons, J. P., and Bishop, J. O. (1988) A Mup promoter-thymidine kinase reporter gene shows relaxed tissue-specific expression and confers male sterility upon transgenic mice, Mol. Cell. Biol. 8, 4821–4828.

    PubMed  CAS  Google Scholar 

  15. Herrmann, J. E., Imura, T., Song, B., Qi, J., Ao, Y., Nguyen, T. K., Korsak, R. A., Takeda, K., Akira, S., and Sofroniew, M. V. (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury, J. Neurosci. 28, 7231–7243.

    Article  PubMed  CAS  Google Scholar 

  16. Forni, P. E., Scuoppo, C., Imayoshi, I., Taulli, R., Dastru, W., Sala, V., Betz, U. A., Muzzi, P., Martinuzzi, D., Vercelli, A. E., Kageyama, R., and Ponzetto, C. (2006) High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly, J Neurosci 26, 9593–9602.

    Article  PubMed  CAS  Google Scholar 

  17. Myer, D. J., Gurkoff, G. G., Lee, S. M., Hovda, D. A., and Sofroniew, M. V. (2006) Essential protective roles of reactive astrocytes in traumatic brain injury, Brain 129, 2761–2772.

    Article  PubMed  CAS  Google Scholar 

  18. Voskuhl, R. R., Peterson, R. S., Song, B., Ao, Y., Morales, L. B., Tiwari-Woodruff, S., and Sofroniew, M. V. (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS, J. Neurosci. 29, 11511–11522.

    Article  PubMed  CAS  Google Scholar 

  19. Savidge, T. C., Newman, P., Pothoulakis, C., Ruhl, A., Neunlist, M., Bourreille, A., Hurst, R., and Sofroniew, M. V. (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione, Gastroenterology 132, 1344–1358.

    Article  PubMed  CAS  Google Scholar 

  20. Saxe, M., Battaglia, F., Wang, J. W., Malleret, G., David, D. J., Monckton, J. E., Garcia, A. D. R., Sofroniew, M. V., Kandel, E. R., Santarelli, L., Hen, R., and Drew, M. R. (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus, Proc. Natl. Acad. Sci. USA 103, 17501–17506.

    Article  PubMed  CAS  Google Scholar 

  21. Saxe, M. D., Malleret, G., Vronskaya, S., Mendez, I., Garcia, A. D., Sofroniew, M. V., Kandel, E. R., and Hen, R. (2007) Paradoxical influence of hippocampal neurogenesis on working memory, Proc. Natl. Acad. Sci. USA 104, 4642–4646.

    Article  PubMed  CAS  Google Scholar 

  22. Hatten, M. E., Liem, R. K. H., Shelanski, M. L., and Mason, C. A. (1991) Astroglia in CNS injury, Glia 4, 233–243.

    Article  PubMed  CAS  Google Scholar 

  23. Amat, J. A., Ishiguro, H., Nakamura, K., and Norton, W. T. (1996) Phenotypic diversity and kinetics of proliferating microglia and astrocytes following cortical stab wounds, Glia 16, 368–382.

    Article  PubMed  CAS  Google Scholar 

  24. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain, Cell 97, 703–716.

    Article  PubMed  CAS  Google Scholar 

  25. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., and Kriegstein, A. R. (2001) Neurons derived from radial glial cells establish radial units in neocortex, Nature 409, 714–720.

    Article  PubMed  CAS  Google Scholar 

  26. Imura, T., Kornblum, H. I., and Sofroniew, M. V. (2003) The predominant neural stem cell isolated from postnatal and adult forebrain but not from early embryonic forebrain expresses GFAP, J. Neurosci. 23, 2824–2832.

    PubMed  CAS  Google Scholar 

  27. Imura, T., Nakano, I., Kornblum, H. I., and Sofroniew, M. V. (2006) Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: Differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes, Glia 53, 277–293.

    Article  PubMed  Google Scholar 

  28. Gregorian, C., Nakashima, J., Le Belle, J., Ohab, J., Kim, R., Liu, A., Smith, K. B., Groszer, M., Garcia, A. D., Sofroniew, M. V., Carmichael, S. T., Kornblum, H. I., Liu, X., and Wu, H. (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis, J. Neurosci. 29, 1874–1886.

    Article  PubMed  CAS  Google Scholar 

  29. Lutz, S. E., Zhao, Y., Gulinello, M., Lee, S. C., Raine, C. S., and Brosnan, C. F. (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation, J. Neurosci. 29, 7743–7752.

    Article  PubMed  CAS  Google Scholar 

  30. Sahni, V., Mukhopadhyay, A., Tysseling, V., Hebert, A., Birch, D., McGuire, T. L., Stupp, S. I., and Kessler, J. A. (2010) BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury, J Neurosci 30, 1839–1855.

    Article  PubMed  CAS  Google Scholar 

  31. Gregorian, C., Nakashima, J., Dry, S. M., Nghiemphu, P. L., Smith, K. B., Ao, Y., Dang, J., Lawson, G., Mellinghoff, I. K., Mischel, P. S., Phelps, M., Parada, L. F., Liu, X., Sofroniew, M. V., Eilber, F. C., and Wu, H. (2009) PTEN dosage is essential for neurofibroma development and malignant transformation, Proc. Natl. Acad. Sci. USA 106, 19479–19484.

    Article  PubMed  CAS  Google Scholar 

  32. Ohab, J. J., Fleming, S., Blesch, A., and Carmichael, S. T. (2006) A neurovascular niche for neurogenesis after stroke, J. Neurosci. 26, 13007–13016.

    Article  PubMed  CAS  Google Scholar 

  33. Jessen, K. R., and Mirsky, R. (1980) Glial cells in the enteric nervous system contain glial fibrillary acidic protein, Nature 286, 736–737.

    Article  PubMed  CAS  Google Scholar 

  34. Jessen, K. R., and Mirsky, R. (1992) Schwann cells: Early lineage, regulation of proliferation and control of myelin formation, Curr. Opin. Neurobiol. 2, 575–581.

    Article  PubMed  CAS  Google Scholar 

  35. Madison, R. D., Sofroniew, M. V., and Robinson, G. A. (2009) Schwann cell influence on motor neuron regeneration accuracy, Neuroscience 163, 213–221.

    Article  PubMed  CAS  Google Scholar 

  36. Feng, G., Mellor, R., Bernstein, M., Keller-Peck, C., Nguyen, Q., Wallace, M., Nerbonne, J., Lichtman, J., and Sanes, J. (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP, Neuron 28, 41–51.

    Article  PubMed  CAS  Google Scholar 

  37. Zhuo, L., Theis, M., Alvarez-Maya, I., Brenner, M., Willecke, K., and Messing, A. (2001) hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo, Genesis 31, 85–94.

    Article  PubMed  CAS  Google Scholar 

  38. Malatesta, P., Hack, M. A., Hartfuss, E., Kettenmann, H., Klinkert, W., Kirchhoff, F., and Götz, M. (2003) Neuronal or glial progeny: Regional differences in radial glia fate, Neuron 37, 751–764.

    Article  PubMed  CAS  Google Scholar 

  39. Barres, B. A. (2008) The mystery and magic of glia: a perspective on their roles in health and disease, Neuron 60, 430–440.

    Article  PubMed  CAS  Google Scholar 

  40. Ganat, Y. M., Silbereis, J., Cave, C., Ngu, H., Anderson, G. M., Ohkubo, Y., Ment, L. R., and Vaccarino, F. M. (2006) Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo, J Neurosci 26, 8609–8621.

    Article  PubMed  CAS  Google Scholar 

  41. Casper, K. B., Jones, K., and McCarthy, K. D. (2007) Characterization of astrocyte-specific conditional knockouts, Genesis 45, 292–299.

    Article  PubMed  CAS  Google Scholar 

  42. Slezak, M., Goritz, C., Niemiec, A., Frisen, J., Chambon, P., Metzger, D., and Pfrieger, F. W. (2007) Transgenic mice for conditional gene manipulation in astroglial cells, Glia 55, 1565–1576.

    Article  PubMed  Google Scholar 

  43. Barreto, G., Santos-Galindo, M., Diz-Chaves, Y., Pernia, O., Carrero, P., Azcoitia, I., and Garcia-Segura, L. M. (2009) Selective estrogen receptor modulators decrease reactive astrogliosis in the injured brain: effects of aging and prolonged depletion of ovarian hormones, Endocrinology 150, 5010–5015.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author’s work is supported by grants from the National Institutes of Health (NINDS) NS057624, Wings for Life, Multiple Sclerosis Society, and Adelson Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Sofroniew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sofroniew, M.V. (2012). Transgenic Techniques for Cell Ablation or Molecular Deletion to Investigate Functions of Astrocytes and Other GFAP-Expressing Cell Types. In: Milner, R. (eds) Astrocytes. Methods in Molecular Biology, vol 814. Humana Press. https://doi.org/10.1007/978-1-61779-452-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-452-0_35

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-451-3

  • Online ISBN: 978-1-61779-452-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics