Skip to main content

Isolation and Culture of Spinal Cord Astrocytes

  • Protocol
  • First Online:
Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 814))

Abstract

Astrocytes are possibly the most numerous cells of the vertebrate central nervous system, yet a detailed characterization of their functions is still missing. One potential reason for the obscurity of astrocytic function is that they represent a diverse population of cells that all share some critical characteristics. In the CNS, astrocytes have been proposed to perform many functions. For example, they are supportive cells that provide guidance to newly formed migrating neurons and axons. They regulate the functions of endothelial cells at the blood brain barrier, provide nutrients, and maintain homeostasis including ionic balance within the CNS. More recently, dissecting the central role of astrocytes in mediating injury responses in the CNS, particularly the spinal cord, has become an area of considerable importance. The ability to culture-enriched populations of astrocytes has facilitated a detailed dissection of their potential roles in the developing and adult, normal, and injured brain and spinal cord. Most importantly, in vitro models have defined molecular signals that may mediate or regulate astrocyte functions and the capacity to modulate these signals may provide new opportunities for therapeutic intervention after spinal cord injury and other neural insults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aloisi, F. (2001) Immune function of microglia, Glia 36, 165–179.

    Article  PubMed  CAS  Google Scholar 

  2. Miller, R. H. (2002) Regulation of oligodendrocyte development in the vertebrate CNS, Progress in Neurobiology 67, 451–467.

    Article  PubMed  CAS  Google Scholar 

  3. Soula, C., Sagot, Y., Cochard, P., and Duprat, A. M. (1990) Astroglial differentiation from neuroepithelial precursor cells of amphibian embryos: an in vivo and in vitro analysis, Int J Dev Biol 34, 351–364.

    PubMed  CAS  Google Scholar 

  4. Nishyama, A. (2007) Polydendrocytes: NG2 cells with many roles in development and repairof the CNS, Neuroscientist 13, 62–76.

    Article  Google Scholar 

  5. Bakiri, Y., Attwell, D., and Karadottir, R. (2009) Electrical signalling properties of oligodendrocyte precursor cells, Neuron Glia Biol 5, 3–11.

    Article  PubMed  Google Scholar 

  6. Karadottir, R., Hamilton, N. B., Bakiri, Y., and Attwell, D. (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter, Nat Neurosci 11, 450–456.

    Article  PubMed  CAS  Google Scholar 

  7. Raff, M. C., Miller, R. H., and Noble, M. (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium, Nature 303, 390–396.

    Article  PubMed  CAS  Google Scholar 

  8. Chiu, F. C., Norton, W. T., and Fields, K. L. (1981) The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein, and the fibroblast-type filament protein, vimentin, J Neurochem 37, 147–155.

    Article  PubMed  CAS  Google Scholar 

  9. Jessen, K. R., Thorpe, R., and Mirsky, R. (1984) Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes, J Neurocytol 13, 187–200.

    Article  PubMed  CAS  Google Scholar 

  10. Bullon, M. M., Alvarez-Gago, T., Fernandez-Ruiz, B., and Aguirre, C. (1984) Glial fibrillary acidic protein (GFAP) in spinal cord of postnatal rat. An immunoperoxidase study in semithin sections, Brain Res 316, 129–133.

    PubMed  CAS  Google Scholar 

  11. Eng, L. F. (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes, J Neuroimmunol 8, 203–214.

    Article  PubMed  CAS  Google Scholar 

  12. Nakazawa, E., and Ishikawa, H. (1998) Ultrastructural observations of astrocyte end-feet in the rat central nervous system, J Neurocytol 27, 431–440.

    Article  PubMed  CAS  Google Scholar 

  13. Abbott, N. J., Revest, P. A., and Romero, I. A. (1992) Astrocyte-endothelial interaction: physiology and pathology, Neuropathol Appl Neurobiol 18, 424–433.

    Article  PubMed  CAS  Google Scholar 

  14. Xu, J., and Ling, E. A. (1994) Studies of the ultrastructure and permeability of the blood-brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers, J Anat 184 (Pt 2), 227–237.

    PubMed  Google Scholar 

  15. Abbott, N. J. (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability, J Anat 200, 629–638.

    Article  PubMed  CAS  Google Scholar 

  16. Kang, J., Jiang, L., Goldman, S. A., and Nedergaard, M. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission, Nat Neurosci 1, 683–692.

    Article  PubMed  CAS  Google Scholar 

  17. Blomstrand, F., Aberg, N. D., Eriksson, P. S., Hansson, E., and Ronnback, L. (1999) Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions, Neuroscience 92, 255–265.

    Article  PubMed  CAS  Google Scholar 

  18. Parri, H. R., Gould, T. M., and Crunelli, V. (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation, Nat Neurosci 4, 803–812.

    Article  PubMed  CAS  Google Scholar 

  19. Butt, A. M., Duncan, A., and Berry, M. (1994) Astrocyte associations with nodes of Ranvier: ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve, J Neurocytol 23, 486–499.

    Article  PubMed  CAS  Google Scholar 

  20. Gallo, V., and Chittajallu, R. (2001) Neuroscience. Unwrapping glial cells from the synapse: what lies inside?, Science 292, 872–873.

    Article  PubMed  CAS  Google Scholar 

  21. Berry, M., Ibrahim, M., Carlile, J., Ruge, F., Duncan, A., and Butt, A. M. (1995) Axon-glial relationships in the anterior medullary velum of the adult rat, J Neurocytol 24, 965–983.

    Article  PubMed  CAS  Google Scholar 

  22. Benarroch, E. E. (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system, Mayo Clin Proc 80, 1326–1338.

    Article  PubMed  CAS  Google Scholar 

  23. Bacci, A., Verderio, C., Pravettoni, E., and Matteoli, M. (1999) The role of glial cells in synaptic function, Philos Trans R Soc Lond B Biol Sci 354, 403–409.

    Article  PubMed  CAS  Google Scholar 

  24. Araque, A., Sanzgiri, R. P., Parpura, V., and Haydon, P. G. (1999) Astrocyte-induced modulation of synaptic transmission, Can J Physiol Pharmacol 77, 699–706.

    Article  PubMed  CAS  Google Scholar 

  25. Ffrench-Constant, C., and Raff, M. C. (1986) The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination, Nature 323, 335–338.

    Article  PubMed  CAS  Google Scholar 

  26. Little, A. R., and O’Callagha, J. P. (2001) Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines?, Neurotoxicology 22, 607–618.

    Article  PubMed  CAS  Google Scholar 

  27. Nieto-Sampedro, M., Saneto, R. P., de Vellis, J., and Cotman, C. W. (1985) The control of glial populations in brain: changes in astrocyte mitogenic and morphogenic factors in response to injury, Brain Res 343, 320–328.

    Article  PubMed  CAS  Google Scholar 

  28. Eng, L. F., and Ghirnikar, R. S. (1994) GFAP and astrogliosis, Brain Pathol 4, 229–237.

    Article  PubMed  CAS  Google Scholar 

  29. Guenard, V., Frisch, G., and Wood, P. M. (1996) Effects of axonal injury on astrocyte proliferation and morphology in vitro: implications for astrogliosis, Exp Neurol 137, 175–190.

    Article  PubMed  CAS  Google Scholar 

  30. Sykova, E., Vargova, L., Prokopova, S., and Simonova, Z. (1999) Glial swelling and astrogliosis produce diffusion barriers in the rat spinal cord, Glia 25, 56–70.

    Article  PubMed  CAS  Google Scholar 

  31. Fitch, M. T., and Silver, J. (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure, Exp Neurol 209, 294–301.

    Article  PubMed  CAS  Google Scholar 

  32. Miller, R. H., Abney, E. R., David, S., Ffrench-Constant, C., Lindsay, R., Patel, R., Stone, J., and Raff, M. C. (1986) Is reactive gliosis a property of a distinct subpopulation of astrocytes?, J Neurosci 6, 22–29.

    PubMed  CAS  Google Scholar 

  33. Fawcett, J. W., and Asher, R. A. (1999) The glial scar and central nervous system repair, Brain Res Bull 49, 377–391.

    Article  PubMed  CAS  Google Scholar 

  34. Jones, L. L., Yamaguchi, Y., Stallcup, W. B., and Tuszynski, M. H. (2002) NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors, J Neurosci 22, 2792–2803.

    PubMed  CAS  Google Scholar 

  35. Silver, J., and Miller, J. H. (2004) Regeneration beyond the glial scar, Nat Rev Neurosci 5, 146–156.

    Article  PubMed  CAS  Google Scholar 

  36. Fuller, M. L., DeChant, A. K., Rothstein, B., Caprariello, A., Wang, R., Hall, A. K., and Miller, R. H. (2007) Bone morphogenetic proteins promote gliosis in demyelinating spinal cord lesions, Ann Neurol 62, 288–300.

    Article  PubMed  CAS  Google Scholar 

  37. Faulkner, J. R., Herrmann, J. E., Woo, M. J., Tansey, K. E., Doan, N. B., and Sofroniew, M. V. (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury, J Neurosci 24, 2143–2155.

    Article  PubMed  CAS  Google Scholar 

  38. Bush, T. G., Puvanachandra, N., Horner, C. H., Polito, A., Ostenfeld, T., Svendsen, C. N., Mucke, L., Johnson, M. H., and Sofroniew, M. V. (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice, Neuron 23, 297–308.

    Article  PubMed  CAS  Google Scholar 

  39. Miller, R. H., and Szigeti, V. (1991) Clonal analysis of astrocyte diversity in neonatal rat spinal cord cultures, Development 113, 353–362.

    PubMed  CAS  Google Scholar 

  40. Agius, E., Decker, Y., Soukkarieh, C., Soula, C., and Cochard, P. (2010) Role of BMPs in controlling the spatial and temporal origin of GFAP astrocytes in the embryonic spinal cord, Dev Biol 344, 611–620.

    Article  PubMed  CAS  Google Scholar 

  41. Luo, Y., Mughal, M. R., Ouyang, T. G., Jiang, H., Luo, W., Yu, Q. S., Greig, N. H., and Mattson, M. P. (2010) Plumbagin promotes the generation of astrocytes from rat spinal cord neural progenitors via activation of the transcription factor Stat3, J Neurochem;115(6):1337–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the members of the Translational Neuroscience Center for helping develop these protocols. The work was supported by NIH NS30800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kerstetter, A.E., Miller, R.H. (2012). Isolation and Culture of Spinal Cord Astrocytes. In: Milner, R. (eds) Astrocytes. Methods in Molecular Biology, vol 814. Humana Press. https://doi.org/10.1007/978-1-61779-452-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-452-0_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-451-3

  • Online ISBN: 978-1-61779-452-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics