Skip to main content

The Activity-Based Anorexia Mouse Model

  • Protocol
  • First Online:
Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 829))

Abstract

Animals housed with running wheels and subjected to daily food restriction show paradoxical reductions in food intake and increases in running wheel activity. This phenomenon, known as activity-based anorexia (ABA), leads to marked reductions in body weight that can ultimately lead to death. Recently, ABA has been proposed as a model of anorexia nervosa (AN). AN affects about 8 per 100,000 females and has the highest mortality rate among all psychiatric illnesses. Given the reductions in quality of life, high mortality rate, and the lack of pharmacological treatments for AN, a better understanding of the mechanisms underlying AN-like behavior is greatly needed. This chapter provides basic guidelines for conducting ABA experiments using mice. The ABA mouse model provides an important tool for investigating the neurobiological underpinnings of AN-like behavior and identifying novel treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall JF, Smith K, Schnitzer SB, Hanford PV (1953) Elevation of activity level in the rat following transition from ad libitum to restricted feeding. J Comp Physiol Psychol 46:429–433.

    Article  PubMed  CAS  Google Scholar 

  2. Hall JF, Hanford PV (1954) Activity as a function of a restricted feeding schedule. J Comp Physiol Psychol 47:362–363.

    Article  PubMed  CAS  Google Scholar 

  3. Routtenberg A, Kuznesof AW (1967) Self-starvation of rats living in activity wheels on a restricted feeding schedule. J Comp Physiol Psychol 64:414–421.

    Article  PubMed  CAS  Google Scholar 

  4. Epling WF, Pierce WD, Stefan LA (1981) Schedule-induced self-starvation. In: C.M. Bradshaw, E. Szabadi, and Lowe CF (Eds.), Quantification of steady-state operant behavior (pp. 393–396). Amsterdam: North-Holland.

    Google Scholar 

  5. Burden VR, White BD, Dean RG, Martin RJ (1993) Activity of the hypothalamic-pituitary-adrenal axis is elevated in rats with activity-based anorexia. J Nutr 123:1217–1225.

    PubMed  CAS  Google Scholar 

  6. Vincent GP, Pare WP (1976) Activity-stress ulcer in the rat, hamster, gerbil and guinea pig. Physiol Behav 16:557–560.

    Article  PubMed  CAS  Google Scholar 

  7. Vincent GP, Pare WP, Isom KE, Reeves JM (1977) Activity-stress gastric lesions in the chipmunk (Tanias striatus). Physiol Behav 5: 449–452.

    Google Scholar 

  8. Treasure JL, Owen JB (1997) Intriguing links between animal behavior and anorexia nervosa. Int J Eat Disord 21:307–311.

    Article  PubMed  CAS  Google Scholar 

  9. Gelegen C, Collier DA, Campbell IC, Oppelaar H, van den Heuvel J, Adan RA, Kas MJ (2007) Difference in susceptibility to activity-based anorexia in two inbred strains of mice. Eur Neuropsychopharmacol 17:199–205.

    Article  PubMed  CAS  Google Scholar 

  10. Lambert KG (1993) The activity-stress paradigm: possible mechanisms and applications. J Gen Psychol 120:21–32.

    Article  PubMed  CAS  Google Scholar 

  11. Marrazzi MA, Luby ED (1986) An auto-addiction opiod model of chronic anorexia nervosa. Int J Eat Disord 5:191–208.

    Article  Google Scholar 

  12. Guisinger S (2003) Adapted to flee famine: adding an evolutionary perspective on anorexia nervosa. Psychol Rev 110:745–761.

    Article  PubMed  Google Scholar 

  13. Attia E Anorexia nervosa: current status and future directions. Annu Rev Med 61:425–435.

    Google Scholar 

  14. Birmingham CL, Su J, Hlynsky JA, Goldner EM, Gao M (2005) The mortality rate from anorexia nervosa. Int J Eat Disord 38:143–146.

    Article  PubMed  Google Scholar 

  15. Kron L, Katz JL, Gorzynski G, Weiner H (1978) Hyperactivity in anorexia nervosa: a fundamental clinical feature. Compr Psychiatry 19:433–440.

    Article  PubMed  CAS  Google Scholar 

  16. Hebebrand J, Exner C, Hebebrand K, Holtkamp C, Casper RC, Remschmidt H, Herpertz-Dahlmann B, Klingenspor M (2003) Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav 79:25–37.

    Article  PubMed  CAS  Google Scholar 

  17. Kaye WH, Gwirtsman HE, George DT, Ebert MH, Jimerson DC, Tomai TP, Chrousos GP, Gold PW (1987) Elevated cerebrospinal fluid levels of immunoreactive corticotropin-releasing hormone in anorexia nervosa: relation to state of nutrition, adrenal function, and intensity of depression. J Clin Endocrinol Metab 64:203–208.

    Article  PubMed  CAS  Google Scholar 

  18. Lawson EA, Klibanski A (2008) Endocrine abnormalities in anorexia nervosa. Nat Clin Pract Endocrinol Metab 4:407–414.

    Article  PubMed  Google Scholar 

  19. Kaye WH, Bulik CM, Thornton L, Barbarich N, Masters K (2004) Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatry 161:2215–2221.

    Article  PubMed  Google Scholar 

  20. Pike KM (1998) Long-term course of anorexia nervosa: response, relapse, remission, and recovery. Clin Psychol Rev 18:447–475.

    Article  PubMed  CAS  Google Scholar 

  21. Carter JC, Blackmore E, Sutandar-Pinnock K, Woodside DB (2004) Relapse in anorexia nervosa: a survival analysis. Psychol Med 34:671–679.

    Article  PubMed  CAS  Google Scholar 

  22. Guarda AS (2008) Treatment of anorexia nervosa: insights and obstacles. Physiol Behav 94:113–120.

    Article  PubMed  CAS  Google Scholar 

  23. Fisher CA, Hetrick SE, Rushford N Family therapy for anorexia nervosa. Cochrane Database Syst Rev 4:CD004780.

    Google Scholar 

  24. Murphy R, Straebler S, Cooper Z, Fairburn CG (2010) Cognitive behavioral therapy for eating disorders. Psychiatr Clin North Am 33:611–627.

    Article  PubMed  Google Scholar 

  25. Bulik CM, Berkman ND, Brownley KA, Sedway JA, Lohr KN (2007) Anorexia nervosa treatment: a systematic review of randomized controlled trials. Int J Eat Disord 40:310–320.

    Article  PubMed  Google Scholar 

  26. Lock J, Agras WS, Bryson S, Kraemer HC (2005) A comparison of short- and long-term family therapy for adolescent anorexia nervosa. J Am Acad Child Adolesc Psychiatry 44:632–639.

    Article  PubMed  Google Scholar 

  27. Walsh BT, Kaplan AS, Attia E, Olmsted M, Parides M, Carter JC, Pike KM, Devlin MJ, Woodside B, Roberto CA, Rockert W (2006) Fluoxetine after weight restoration in anorexia nervosa: a randomized controlled trial. JAMA 295:2605–2612.

    Article  PubMed  CAS  Google Scholar 

  28. Kaye WH, Nagata T, Weltzin TE, Hsu LK, Sokol MS, McConaha C, Plotnicov KH, Weise J, Deep D (2001) Double-blind placebo-controlled administration of fluoxetine in restricting- and restricting-purging-type anorexia nervosa. Biol Psychiatry 49:644–652.

    Article  PubMed  CAS  Google Scholar 

  29. Bissada H, Tasca GA, Barber AM, Bradwejn J (2008) Olanzapine in the treatment of low body weight and obsessive thinking in women with anorexia nervosa: a randomized, double-blind, placebo-controlled trial. Am J Psychiatry 165:1281–1288.

    Article  PubMed  Google Scholar 

  30. Geyer M, Markou A (1995). Animal models of psychiatric disorders. In: Bloom F, Kupfer D (Eds.), Psychopharmacology: The Fourth Generation of Progress. Raven Press: New York. pp 787–798.

    Google Scholar 

  31. Doerries LE (1996) Gender differences in activity anorexia: Predictable, paradoxical or enigmatic? In: Epling WF, Pierce WD (Eds.), Activity anorexia: Theory, research, and treatment Mahwah, NJ: Erlbaum. pp 69–77.

    Google Scholar 

  32. Woods DJ, Routtenberg A (1971) “Self-starvation” in activity wheels: developmental and chlorpromazine interactions. J Comp Physiol Psychol 76:84–93.

    Article  PubMed  CAS  Google Scholar 

  33. Pare WP (1975) The influence of food consumption and running activity on the activity-stress ulcer in the rat. Am J Dig Dis 20:262–273.

    Article  PubMed  CAS  Google Scholar 

  34. Boakes RA, Mills KJ, Single JP (1999) Sex differences in the relationship between activity and weight loss in the rat. Behav Neurosci 113:1080–1089.

    Article  PubMed  CAS  Google Scholar 

  35. Doerries LE, Stanley EZ, Aravich PF (1991) Activity-based anorexia: relationship to gender and activity-stress ulcers. Physiol Behav 50:945–949.

    Article  PubMed  CAS  Google Scholar 

  36. Verhagen LA, Egecioglu E, Luijendijk MC, Hillebrand JJ, Adan RA, Dickson SL (2010) Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. Eur Neuropsychopharmacol 21:384–392.

    Google Scholar 

  37. Gelegen C, van den Heuvel J, Collier DA, Campbell IC, Oppelaar H, Hessel E, Kas MJ (2008) Dopaminergic and brain-derived neurotrophic factor signalling in inbred mice exposed to a restricted feeding schedule. Genes Brain Behav 7:552–559.

    Article  PubMed  CAS  Google Scholar 

  38. Gelegen C, Pjetri E, Campbell IC, Collier DA, Oppelaar H, Kas MJ (2010) Chromosomal mapping of excessive physical activity in mice in response to a restricted feeding schedule. Eur Neuropsychopharmacol 20:317–326.

    Article  PubMed  CAS  Google Scholar 

  39. Lewis DY, Brett RR (2010) Activity-based anorexia in C57/BL6 mice: Effects of the phytocannabinoid, big up tri, open(9)-tetrahydrocannabinol (THC) and the anandamide analogue, OMDM-2. Eur Neuropsychopharmacol 20:622–631.

    Google Scholar 

  40. Lambert KG, Kinsley CH (1993) Sex differences and gonadal hormones influence susceptibility to the activity-stress paradigm. Physiol Behav 53:1085–1090.

    Article  PubMed  CAS  Google Scholar 

  41. Finger FW (1969) Estrus and general activity in the rat. J Comp Physiol Psychol 68:461–466.

    Article  PubMed  CAS  Google Scholar 

  42. Blaustein JD, Wade GN (1976) Ovarian influences on the meal patterns of female rats. Physiol Behav 17:201–208.

    Article  PubMed  CAS  Google Scholar 

  43. Pare WP, Vincent GP, Isom KE, Reeves JM (1978) Sex differences and incidence of activity-stress ulcers in the rat. Psychol Rep 43:591–594.

    Article  PubMed  CAS  Google Scholar 

  44. Persons JE, Stephan FK, Bays ME (1993) Diet-induced obesity attenuates anticipation of food access in rats. Physiol Behav 54:55–64.

    Article  PubMed  CAS  Google Scholar 

  45. Boakes RA, Dwyer DM (1997) Weight loss in rats produced by running: effects of prior experience and individual housing. Q J Exp Psychol B 50:129–148.

    PubMed  CAS  Google Scholar 

  46. Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125:141–149.

    Article  PubMed  CAS  Google Scholar 

  47. Pare WP, Vincent GP, Natelson BH (1985) Daily feeding schedule and housing on incidence of activity-stress ulcer. Physiol Behav 34:423–429.

    Article  PubMed  CAS  Google Scholar 

  48. Gutierrez E, Cerrato M, Carrera O, Vazquez R (2008) Heat reversal of activity-based anorexia: implications for the treatment of anorexia nervosa. Int J Eat Disord 41:594–601.

    Article  PubMed  Google Scholar 

  49. Hillebrand JJ, de Rijke CE, Brakkee JH, Kas MJ, Adan RA (2005) Voluntary access to a warm plate reduces hyperactivity in activity-based anorexia. Physiol Behav 85:151–157.

    Article  PubMed  CAS  Google Scholar 

  50. Gutierrez E, Vazquez R, Boakes RA (2002) Activity-based anorexia: ambient temperature has been a neglected factor. Psychon Bull Rev 9:239–249.

    Article  PubMed  Google Scholar 

  51. Lambert KG, Peacock LJ (1989) Feeding regime affects activity-stress ulcer production. Physiol Behav 46:743–746.

    Article  PubMed  CAS  Google Scholar 

  52. Boakes RA, Juraskova I (2001) The role of drinking in the suppression of food intake by recent activity. Behav Neurosci 115:718–730.

    Article  PubMed  CAS  Google Scholar 

  53. Beneke WM, Schulte SE, vander Tuig JG (1995) An analysis of excessive running in the development of activity anorexia. Physiol Behav 58:451–457.

    Google Scholar 

  54. Brown AJ, Avena NM, Hoebel BG (2008) A high-fat diet prevents and reverses the development of activity-based anorexia in rats. Int J Eat Disord 41:383–389.

    Article  PubMed  Google Scholar 

  55. Watanabe K, Hara C, Ogawa N (1992) Feeding conditions and estrous cycle of female rats under the activity-stress procedure from aspects of anorexia nervosa. Physiol Behav 51:827–832.

    Article  PubMed  CAS  Google Scholar 

  56. Routtenberg A (1968) “Self-starvation” of rats living in activity wheels: adaptation effects. J Comp Physiol Psychol 66:234–238.

    Article  PubMed  CAS  Google Scholar 

  57. Dwyer DM, Boakes RA (1997) Activity-based anorexia in rats as failure to adapt to a feeding schedule. Behav Neurosci 111:195–205.

    Article  PubMed  CAS  Google Scholar 

  58. Perez-Padilla A, Magalhaes P, Pellon R (2010) The effects of food presentation at regular or irregular times on the development of activity-based anorexia in rats. Behav Processes 84:541–545.

    Article  PubMed  Google Scholar 

  59. Lett BT, Grant VL, Smith JF, Koh MT (2001) Preadaptation to the feeding schedule does not eliminate activity-based anorexia in rats. Q J Exp Psychol B 54:193–199.

    Article  PubMed  CAS  Google Scholar 

  60. Holmes MM, Mistlberger RE (2000) Food anticipatory activity and photic entrainment in food-restricted BALB/c mice. Physiol Behav 68:655–666.

    Article  PubMed  CAS  Google Scholar 

  61. Mistlberger RE (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18:171–195.

    Article  PubMed  CAS  Google Scholar 

  62. Pare WP (1980) Psychological studies of stress ulcer in the rat. Brain Res Bull 5 Suppl 1:73–79.

    Article  PubMed  Google Scholar 

  63. Dixon DP, Ackert AM, Eckel LA (2003) Development of, and recovery from, activity-based anorexia in female rats. Physiol Behav 80:273–279.

    Article  PubMed  CAS  Google Scholar 

  64. Cnaan A, Laird NM, Slasor P (1997) Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med 16:2349–2380.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mariel P. Seiglie for her invaluable technical assistance and for her advice and comments on this manuscript. This work was supported by NIH Grant R01MH079424 and NIH Grant TG2GM07839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie C. Dulawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Klenotich, S.J., Dulawa, S.C. (2012). The Activity-Based Anorexia Mouse Model. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Humana Press. https://doi.org/10.1007/978-1-61779-458-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics