Skip to main content

Rapid Generation of Dityrosine Cross-linked Aβ Oligomers via Cu-Redox Cycling

  • Protocol
  • First Online:
Amyloid Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 849))

Abstract

There is a great interest in the role of free radicals and oxidative stress in Alzheimer’s disease and for the role of transition metals in the generation of oligomers of Aβ peptides. In the literature, there are a multitude of varying methods that can be used to create soluble oligomers of Aβ, however, the processes that create these oligomers are often stochastic by nature and thus reproducibility is an issue. Here we report a simple and reproducible method for the production of radically derived dityrosine cross-linked oligomers of Aβ, through reaction with copper and ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA, Perry G and P.R. Carey (2003) Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence, Biochemistry 42, 2768–2773.

    Article  PubMed  CAS  Google Scholar 

  2. Lue L-F, Kuo Y-M, Roher AE, et al. (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155, 853–862.

    Article  PubMed  CAS  Google Scholar 

  3. Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999) The levels of soluble versus insoluble brain Aβ distinguish Alzheimer’s disease from normal and pathologic aging. Experimental Neurology 158, 328–337.

    Article  PubMed  CAS  Google Scholar 

  4. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, et al. (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46, 860–866.

    Article  PubMed  CAS  Google Scholar 

  5. Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G, et al. (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol.

    Google Scholar 

  6. Guntert A, Dobeli H, Bohrmann B (2006) High sensitivity analysis of amyloid-beta peptide composition in amyloid deposits from human and PS2APP mouse brain. Neuroscience 143, 461–475.

    Article  PubMed  CAS  Google Scholar 

  7. Roher AE, Lowenson JD, Clarke S, Wolkow C, Wang R, et al. (1993) Structural alterations in the peptide backbone of β-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J Biol Chem 268, 3072–3083.

    PubMed  CAS  Google Scholar 

  8. Kaneko I, Morimoto K, Kubo T (2001) Drastic neuronal loss in vivo by β-amyloid racemized at Ser(26) residue: conversion of non-toxic (D-Ser(26))β-amyloid 1–40 to toxic and proteinase-resistant fragments. Neuroscience 104, 1003–1011.

    Article  PubMed  CAS  Google Scholar 

  9. Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, et al. (1995) Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques. Neuron 14, 457–466.

    Article  PubMed  CAS  Google Scholar 

  10. Piccini A, Russo C, Gliozzi A, Relini A, Vitali A, et al. (2005) Beta amyloid is different in normal aging and in Alzheimer disease. J Biol Chem 280, 34186–34192.

    Article  PubMed  CAS  Google Scholar 

  11. Head E, Garzon-Rodriguez W, Johnson JK, Lott IT, Cotman CW, et al. (2001) Oxidation of Aβ and plaque biogenesis in Alzheimer’s disease and Down syndrome. Neurobiol Dis 8, 792–806.

    Article  PubMed  CAS  Google Scholar 

  12. Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545, 39–50.

    Article  PubMed  CAS  Google Scholar 

  13. Bush AI, Tanzi RE (2008) Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics 5, 421–432.

    Article  PubMed  CAS  Google Scholar 

  14. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, et al. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropath. Exp. Neurology 60, 759–767.

    CAS  Google Scholar 

  15. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21, 4183–4187.

    PubMed  CAS  Google Scholar 

  16. Duce JA, Bush AI (2010) Biological metals and Alzheimer’s disease: implications for therapeutics and diagnostics. Prog Neurobiol 92, 1–18.

    Article  PubMed  CAS  Google Scholar 

  17. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, et al. (1998) Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273, 12817–12826.

    Article  PubMed  CAS  Google Scholar 

  18. Schapira AH (1996) Oxidative stress and mitochondrial dysfunction in neurodegeneration. Curr Opin Neurol 9, 260–264.

    Article  PubMed  CAS  Google Scholar 

  19. Sparks DL (1997) Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer’s disease? Ann N Y Acad Sci 826, 128–146.

    Article  PubMed  CAS  Google Scholar 

  20. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, et al. (2000) Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem 75, 1219–1233.

    Article  PubMed  CAS  Google Scholar 

  21. Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, et al. (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease β-amyloid. FASEB J 18, 1427–1429.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mental Health Research Institute (Parkville, VIC, Australia) and the Centre for Neuroscience, University of Melbourne (Parkville, VIC, Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley I. Bush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gunn, A.P., Roberts, B.R., Bush, A.I. (2012). Rapid Generation of Dityrosine Cross-linked Aβ Oligomers via Cu-Redox Cycling. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 849. Humana Press. https://doi.org/10.1007/978-1-61779-551-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-551-0_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-550-3

  • Online ISBN: 978-1-61779-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics