Skip to main content

Separation of Natural Products by Countercurrent Chromatography

  • Protocol
  • First Online:
Natural Products Isolation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 864))

Abstract

Countercurrent Chromatography (CCC) provides the natural product chemist with a high-resolution separatory method, which is uniquely applicable to sensitive (unstable) compounds and which allows virtually quantitative recovery of the load sample. Different instruments use different means of retaining a stationary liquid phase. The solvent system (SS) can be chosen to optimize the separatory power and the number of systems available is limitless. Several examples are provided to illustrate the power of the method and to guide the chemist in choice of an appropriate SS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig LC, Craig D (1956) In: Weissenberger A (ed) Techniques in organic chemistry: separation and purification. Interscience Publishers, New York, pp 247–254

    Google Scholar 

  2. Dini I (2011) Flavonoid glycosides from Pouteria obovata (R. Br.) fruit flour. Food Chem 124:884–888

    Article  CAS  Google Scholar 

  3. Hostettmann K, Marston A (1990) Liquid-liquid partition chromatography in natural product isolation. Anal Chim Acta 236:63–76

    Article  CAS  Google Scholar 

  4. Marston A, Hostettmann K (2006) Develop-ments in the application of counter-current chromatography to plant analysis. J Chromatogr A 1112:181–194

    Article  PubMed  CAS  Google Scholar 

  5. Ito Y (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J Chromatogr A 1065:145–168

    Article  PubMed  CAS  Google Scholar 

  6. Sticher O (2008) Natural product isolation. Nat Prod Rep 25:517–554

    Article  PubMed  CAS  Google Scholar 

  7. Sutherland IA, Fisher D (2009) Role of counter-current chromatography in the modernisation of Chinese herbal medicines. J Chromatogr A 1216:740–753

    Article  PubMed  CAS  Google Scholar 

  8. Pan Y, Lu Y (2007) Recent progress in countercurrent chromatography. J Liq Chromatogr Relat Technol 30:649–679

    Article  CAS  Google Scholar 

  9. Yoon KD, Chin Y-W, Kim J (2010) Centrifugal partition chromatography: application to natural products in 1994-2009. J Liq Chromatogr Relat Technol 33:1208–1254

    Article  CAS  Google Scholar 

  10. Pauli GF, Pro SM, Friesen JB (2008) Counter­current separation of natural products. J Nat Prod 71:1489–1508

    Article  PubMed  CAS  Google Scholar 

  11. Ito Y (1986) High-speed countercurrent chromatography. CRC Crit Rev Anal Chem 17:65–143

    Article  CAS  Google Scholar 

  12. Ito Y, Conway WD (1984) Analytical chemistry – applied spectroscopy section, abstract 472. In: Pittsburgh Conference and Exposition, Atlantic City

    Google Scholar 

  13. Ignatova S, Hawes D, van den Heuvel R, Hewitson P, Sutherland IA (2010) A new non-synchronous preparative counter-current centrifuge – the next generation of dynamic extraction/chromatography devices with independent mixing and settling control, which offer a step change in efficiency. J Chromatogr A 1217:34–39

    Article  PubMed  CAS  Google Scholar 

  14. Sutherland IA, Hewitson P, Ignatova S (2009) Scale-up of counter-current chromatography: demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale. J Chromatogr A 1216:8787–8792

    Article  PubMed  CAS  Google Scholar 

  15. Sutherland I, Hewitson P, Ignatova S (2009) New 18-l process-scale counter-current chromatography centrifuge. J Chromatogr A 1216:4201–4205

    Article  PubMed  CAS  Google Scholar 

  16. Zhao Y, Du Q (2007) Separation of solanesol in tobacco leaves extract by slow rotary counter-current chromatography using a novel non-aqueous two-phase solvent system. J Chromatogr A 1151:183–196

    Article  Google Scholar 

  17. Du Q, Shu A, Ito Y (1996) Purification of fish oil ethyl esters by high-speed countercurrent chromatography using non-aqueous solvent systems. J Liq Chromatogr Relat Technol 19:1451–1457

    Article  CAS  Google Scholar 

  18. Sutherland IA, Audo G, Bourton E, Coulliard F, Fisher D, Garrard I et al (2008) Rapid linear scale-up of a protein separation by centrifugal partition chromatography. J Chromatogr A 1190:57–62

    Article  PubMed  CAS  Google Scholar 

  19. Ruiz-Angel MJ, Pino V, Carda-Broch S, Berthod A (2007) Solvent systems for countercurrent chromatography: an aqueous two phase liquid system based on a room temperature ionic liquid. J Chromatogr A 1151:65–73

    Article  PubMed  CAS  Google Scholar 

  20. Magri ML, Cabrera RB, Miranda MV, Fernandez-Lahore HM, Cascone O (2003) Performance of an aqueous two-phase-based countercurrent chromatographic system for horseradish peroxidase purification. J Sep Sci 26:1701–1706

    Article  CAS  Google Scholar 

  21. Friesen JB, Pauli GF (2005) G.U.E.S.S. – a generally useful estimations of solvent systems in CCC. J Liq Chromatogr Relat Technol 28:2777–2806

    Article  CAS  Google Scholar 

  22. Friesen JB, Pauli GF (2007) Rational development of solvent system families in coun-tercurrent chromatography. J Chromatogr A 1151:51–59

    Article  PubMed  CAS  Google Scholar 

  23. Guzlek H, Wood PL, Janaway L (2009) Performance comparison using the GUESS mixture to evaluate counter-current chromatography instruments. J Chromatogr A 1216:4181–4186

    Article  PubMed  CAS  Google Scholar 

  24. Hewitson P, Ignatova S, Ye H, Chen L, Sutherland I (2009) Intermittent counter-current extraction as an alternative approach to purification of Chinese herbal medicine. J Chromatogr A 1216:4187–4192

    Article  PubMed  CAS  Google Scholar 

  25. Berthod A, Ignatova S, Sutherland IA (2009) Advantages of a small-volume counter-current chromatography column. J Chromatogr A 1216:4169–4175

    Article  PubMed  CAS  Google Scholar 

  26. Li J, Ma X, Li F, Wang J, Chen H, Wang G et al (2010) Preparative separation and purification of bufadienolides from Chinese traditional medicine of ChanSu using high-speed counter-current chromatography. J Sep Sci 33:1325–1330

    PubMed  CAS  Google Scholar 

  27. Zhang Y, Liu C, Zhang Z, Qi Y, Wu G, Li S (2010) Solvent gradient elution for comprehensive separation of constituents with wide range of polarity in Apocynum venetum leaves by high-speed counter-current chromatography. J Sep Sci 33:2743–2748

    Article  PubMed  CAS  Google Scholar 

  28. Hopmann E, Arlt W, Minceva M (2011) Solvent system selection in counter-current chromatography using conductor-like screening model for real solvents. J Chromatogr A 1218:242–250

    Article  PubMed  CAS  Google Scholar 

  29. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  30. Berthod A, Hassoun M, Ruiz-Angel MJ (2006) Liquid phase chemical compositions of the Arizona biphasic liquid system, P-17. In: INCCC (ed) CCC 2006. INCCC, Bethesda, MD

    Google Scholar 

  31. Friesen JB, Pauli GF (2008) Performance characteristics of countercurrent separation in analysis of natural products of agricultural significance. J Agric Food Chem 56:19–28

    Article  PubMed  CAS  Google Scholar 

  32. Han Q-B, Wong L, Yang N-Y, Song J-Z, Qiao C-F, Yiu H et al (2008) A simple method to optimize the HSCCC two-phase solvent system by predicting the partition coefficient for target compound. J Sep Sci 31:1189–1194

    Article  PubMed  CAS  Google Scholar 

  33. Dubant S, Mathews B, Higginson P, Crook R, Snowden M, Mitchell J (2008) Practical solvent system selection for counter-current separation of pharmaceutical compounds. J Chromatogr A 1207:190–192

    Article  PubMed  CAS  Google Scholar 

  34. Guzlek H, Baptista IIR, Wood PL, Livingston A (2010) A novel approach to modelling counter-current chromatography. J Chromatogr A 1217:6230–6240

    Article  PubMed  CAS  Google Scholar 

  35. Martin AJP, Synge RLM (1941) A new form of chromatogram employing two liquid phases. I. A theory of chromatography. II. Application to the microdetermination of the higher monoamino acids in proteins. Biochem J 35:1358–1368

    PubMed  CAS  Google Scholar 

  36. de Folter J, Sutherland IA (2009) Universal counter-current chromatography modelling based on counter-current distribution. J Chromatogr A 1216:4218–4224

    Article  PubMed  Google Scholar 

  37. Booth AJ, Sutherland IA, Lye GJ (2003) Modeling the performance of pilot-scale countercurrent chromatography: scale-up predictions and experimental verification of erythromycin separation. Biotechnol Bioeng 81:640–649

    Article  PubMed  CAS  Google Scholar 

  38. Sutherland IA, de Folter J, Wood P (2003) Modelling CCC using an eluting countercurrent distribution model. J Liq Chromatogr Relat Technol 26:1449–1474

    Article  Google Scholar 

  39. Gallagher B, Friesen JB, Pauli GF (2010) Development of prEEdiCCCt – a software tool for the modeling of countercurrent separations (P-43). In: Berthod A (ed) CCC 2010. INCCC, Lyon (France)

    Google Scholar 

  40. Friesen JB, Pauli GF (2007) Reciprocal symmetry plots as a representation of countercurrent chromatograms. Anal Chem 79:2320–2324

    Article  PubMed  CAS  Google Scholar 

  41. Ito Y (1996) pH-peak-focusing and pH-zone-refining countercurrent chromatography. In: Ito Y, Conway WD (eds) High-speed countercurrent chromatography. Wiley, New York, pp 121–175

    Google Scholar 

  42. Ito Y, Ma Y (1996) pH-zone-refining countercurrent chromatography. J Chromatogr A 753:1–36

    Article  PubMed  CAS  Google Scholar 

  43. Wu S, Sun C, Cao X, Zhou H, Hong Z, Pan Y (2004) Preparative counter-current chromatography isolation of liensinine and its analogues from embryo of the seed of Nelumbo nucifera Gaertn. using upright coil planet centrifuge with four multilayer coils connected in series. J Chromatogr A 1041:153–162

    Article  PubMed  CAS  Google Scholar 

  44. Duanmu Q, Li A, Sun A, Liu R, Li X (2010) Semi-preparative high-speed counter-current chromatography separation of alkaloids from embryo of the seed of Nelumbo nucifera Gaertn by pH-gradient elution. J Sep Sci 33:1746–1751

    Article  PubMed  CAS  Google Scholar 

  45. Zheng Z, Minglin W, Daijie W, Wenjuan D, Xiao W, Chengchao Z (2010) Preparative separation of alkaloids from Nelumbo nucifera leaves by conventional and pH-zone-refining countercurrent chromatography. J Chromatogr B 878:1647–1651

    Article  CAS  Google Scholar 

  46. Wang X, Geng Y, Wang D, Shi X, Liu J (2008) Separation and purification of harmine and harmaline from Peganum harmala using pH-zone-refining counter-current chromatography. J Sep Sci 31:3543–3547

    Article  PubMed  CAS  Google Scholar 

  47. Friesen JB, Pauli GF (2009) Binary concepts and standardization in countercurrent separation technology. J Chromatogr A 1216:4237–4244

    Article  PubMed  CAS  Google Scholar 

  48. Shen C-W, Yu T (2009) Peak shape and dispersion behavior of solutes in counter-current chromatography with a single phase. J Chromatogr A 1216:6789–6795

    Article  PubMed  CAS  Google Scholar 

  49. Berthod A, Friesen JB, Inui T, Pauli GF (2007) Elution-extrusion countercurrent chromatography: theory and concepts in metabolic analysis. Anal Chem 79:3371–3382

    Article  PubMed  CAS  Google Scholar 

  50. Friesen JB, Pauli GF (2009) GUESS mix-guided optimization of elution-extrusion counter-current separations. J Chromatogr A 1216:4225–4231

    Article  PubMed  CAS  Google Scholar 

  51. Schaufelberger DE, McCloud TG, Beutler JA (1991) Laser-light-scattering detection for high-speed counter-current chromatography. J Chromatogr 538:87–90

    Article  PubMed  CAS  Google Scholar 

  52. Han QB, Zhou Y, Feng C, Xu G, Huang S-X, Li S-L et al (2009) Bioassay guided discovery of apoptosis inducers from gamboge by high-speed counter-current chromatography and high-pressure liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. J Chromatogr B 877:401–407

    Article  CAS  Google Scholar 

  53. Jerz G, Wybraniec S, Gebers N, Winterhalter P (2010) Target-guided separation of Bougain-villea glabra betacyanins by direct coupling of preparative ion-pair high-speed countercurrent chromatography and electrospray ionization mass-spectrometry. J Chromatogr A 1217:4544–4554

    Article  PubMed  CAS  Google Scholar 

  54. Lee YS, Kim SH, Kim JK, Shin H-K, Kang Y-H, Park JHY et al (2010) Rapid identification and preparative isolation of antioxidant components in licorice. J Sep Sci 33:664–671

    Article  PubMed  Google Scholar 

  55. Drogue S, Rolet-Menet M-C, Thiebaut D, Rosset R (1992) Separation of pristinamycins by high-speed countercurrent chromatography. I. Selection of solvent system and preliminary preparative studies. J Chromatogr 593:363–371

    Article  CAS  Google Scholar 

  56. Chiou FY, Kan P, Chu I-M, Lee C-J (1997) Separation of taxol and cephalomannine by countercurrent chromatography. J Liq Chromatogr Relat Technol 20:57–61

    Article  CAS  Google Scholar 

  57. Gunawardana G, Premachandran U, Burres NS, Whittern DN, Henry R, Spanton S et al (1992) Isolation of 9-Dihydro-13-acetylbaccatin III from Taxus canadensis. J Nat Prod 55:1686–1689

    Article  CAS  Google Scholar 

  58. Chen RH, Hochlowski JE, McAlpine JB, Rasmussen RR (1988) Separation and purification of macrolides using the Ito Multi-Layer Horizontal Coil Planet Centrifuge. J Liq Chromatogr 11:191–201

    Article  CAS  Google Scholar 

  59. De Souza PA, Rangel LP, Oigman SS, Elias MM, Ferreira-Pereira A, De Lucas NC et al (2010) Isolation of two bioactive diterpenic acids from Copaifera glycycarpa oleoresin by high-speed counter-current chromatography. Phytochem Anal 21:539–543

    Article  PubMed  Google Scholar 

  60. Wu D, Jiang X, Wu S (2010) Direct purification of tanshinones from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography without presaturation of the two-phase solvent mixture. J Sep Sci 33:67–73

    Article  PubMed  CAS  Google Scholar 

  61. Urbain A, Corbeiller P, Aligiannis N, Halabalaki M, Skaltsounis A-L (2010) Hydrostatic countercurrent chromatography and ultra high pressure LC: Two fast complementary separation methods for the preparative isolation and the analysis of the fragrant massoia lactones. J Sep Sci 33:1198–1203

    PubMed  CAS  Google Scholar 

  62. Inoue K, Hattori Y, Hino T, Oka H (2010) An approach to on-line electrospray mass spectrometric detection of polypeptide antibiotics of enramycin for high-speed counter-current chromatographic separation. J Pharmaceut Biomed Anal 51:1154–1160

    Article  CAS  Google Scholar 

  63. Brill GM, McAlpine JB, Hochlowski JE (1985) Use of coil planet centrifuge in the isolation of antibiotics. J Liq Chromatogr 8:2259–2280

    Article  CAS  Google Scholar 

  64. Hochlowski JE, Brill GM, Andres WW, Spanton SG, McAlpine JB (1987) Arizonins, a new complex of antibiotics related to kalafungin. II. Isolation and characterization. J Antibiot 40:401–407

    PubMed  CAS  Google Scholar 

  65. Martin DG, Biles C, Peltonen RE (1986) Countercurrent chromatography in the fractionation of natural products. Am Lab 18:21–28

    CAS  Google Scholar 

  66. Dawson MJ, Farthing JE, Marshall PS, Middleton RF, O’Neill MJ, Shuttleworth A et al (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot 45:639–647

    PubMed  CAS  Google Scholar 

  67. Mandava NB, Ito Y (1982) Separation of plant hormones by countercurrent chromatography. J Chromatogr 247:315–325

    Article  CAS  Google Scholar 

  68. Mandala SM, Thornton RA, Frommer BR, Curotto JE, Rozdilsky W, Kurtz MB et al (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot 48:349–356

    PubMed  CAS  Google Scholar 

  69. Stierle DB, Stierle AA, Ganser B (1997) New phomopsolides from a Penicillium sp. J Nat Prod 60:1207–1209

    Article  PubMed  CAS  Google Scholar 

  70. Jarvis BB, De Silva T, McAlpine JB, Swanson SJ, Whittern DN (1992) New trichoverroids from Myrothecium verrucaria isolated by high speed countercurrent chromatography. J Nat Prod 55:1441–1446

    Article  PubMed  CAS  Google Scholar 

  71. Hochlowski JE, Mullally MM, Spanton SG, Whittern DN, Hill P, McAlpine JB (1993) 5-N-acetylardeemin, a novel heterocyclic compound which reverses multiple drug resistance in tumor cells. II. Isolation and elucidation of the structure of 5-N-acetylardeemin and two congeners. J Antibiot 46:380–386

    PubMed  CAS  Google Scholar 

  72. Williams RG (1985) Analytical chemistry – applied spectroscopy section, abstract 300. In: Pittsburgh Conference and Exposition, New Orleans, LA

    Google Scholar 

  73. Breinholt J, Ludvigsen S, Rassing BR, Rosendahl CN, Nielsen SE, Olsen CE (1997) Oxysporidinone: a novel antifungal, N-methyl-4-hydroxy-2-pyridinone from Fusarium oxysporum. J Nat Prod 60:33–35

    Article  CAS  Google Scholar 

  74. Rasmussen RR, Scherr MH, Whittern DN, Buko AM, McAlpine JB (1987) Coloradocin, an antibiotic from a new Actinoplanes. II. Identity with luminamicin and elucidation of structure. J Antibiot 40:1383–1393

    PubMed  CAS  Google Scholar 

  75. Omura S, Iwata R, Iwai Y, Taga S, Tanaka Y, Tomoda H (1985) Luminamicin, a new antibiotic. Production, isolation and physico-chemical and biological properties. J Antibiot 38:1322–1326

    PubMed  CAS  Google Scholar 

  76. Gouda H, Sunazuka T, Ui H, Handa M, Sakoh Y, Iwai Y et al (2005) Stereostructure of luminamicin, an anaerobic antibiotic, via molecular dynamics, NMR spectroscopy, and the modified Mosher method. Proc Natl Acad Sci USA 102:18286–18291

    Article  PubMed  CAS  Google Scholar 

  77. McAlpine JB, Tuan JS, Brown DP, Grebner KD, Whittern DN, Buko A et al (1987) New antibiotics from genetically engineered actinomycetes. I. 2-Norerythromycins, isolation and structural determinations. J Antibiot 40:1115–1122

    PubMed  CAS  Google Scholar 

  78. Hochlowski JE, Hill P, Whittern DN, Scherr MH, Rasmussen RR, Dorwin SA et al (1994) Aselacins, novel compounds that inhibit binding of endothelin to its receptor. II. Isolation and elucidation of structures. J Antibiot 47:528–535

    PubMed  CAS  Google Scholar 

  79. Mitchell SS, Whitehall AB, Trapido-Rosenthal HG, Ireland CM (1997) Isolation and characterization of 1,3-dimethylisoguanine from the Bermudian sponge Amphimedon viridis. J Nat Prod 60:727–728

    Article  PubMed  CAS  Google Scholar 

  80. Hallock YF, Manfredi KP, Dai JR, Cardellina JH 2nd, Gulakowski RJ, McMahon JB et al (1997) Michellamines D-F, new HIV-inhibitory dimeric naphthylisoquinoline alkaloids, and korupensamine E, a new antimalarial monomer, from Ancistrocladus korupensis. J Nat Prod 60:677–683

    Article  PubMed  CAS  Google Scholar 

  81. Abbott T, Peterson R, McAlpine J, Tjarks L, Bagby M (1989) Comparing centrifugal countercurrent chromatography, nonaqueous reversed phase HPLC and Ag+ ion exchange HPLC for the separation and characterization of triterpene acetates. J Liq Chromatogr 12:2281–2301

    CAS  Google Scholar 

  82. McAlpine JB, Theriault RJ, Grebner KD, Hardy DJ, Fernandes PB (1987) Minor products from the microbial transformation of 6-O-methylerythromicin A by Mucor circinelloides. In: 27th Interscience conference on antimicrobial agents and chemotherapy. New York, Abstract 222

    Google Scholar 

  83. Hochlowski JE, Whittern DN, Hill P, McAlpine JB (1994) Dorrigocins: novel antifungal antibiotics that change the morphology of ras-transformed NIH/3T3 cells to that of normal cells. II. Isolation and elucidation of structures. J Antibiot 47:870–874

    PubMed  CAS  Google Scholar 

  84. Kobayashi J, Tsuda M, Fuse H, Sasaki T, Mikami Y (1997) Halishigamides A-D, new cytotoxic oxazole-containing metabolites from Okinawan sponge Halichondria sp. J Nat Prod 60:150–154

    Article  CAS  Google Scholar 

  85. Bruening RC, Oltz EM, Furukawa J, Nakanishi K, Kustin K (1986) Isolation of tunichrome B-1, a reducing blood pigment of the sea squirt, Ascidia nigra. J Nat Prod 49:193–204

    Article  PubMed  CAS  Google Scholar 

  86. Zhang T (1984) Horizontal flow-through coil planet centrifuge: some practical applications of countercurrent chromatography. J Chromatogr 315:287–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. McAlpine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

McAlpine, J.B., Friesen, J.B., Pauli, G.F. (2012). Separation of Natural Products by Countercurrent Chromatography. In: Sarker, S., Nahar, L. (eds) Natural Products Isolation. Methods in Molecular Biology, vol 864. Humana Press. https://doi.org/10.1007/978-1-61779-624-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-624-1_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-623-4

  • Online ISBN: 978-1-61779-624-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics