Skip to main content

Recent Advances in 3D Printing of Tissue Engineering Scaffolds

  • Protocol
  • First Online:
Computer-Aided Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 868))

Abstract

Computer-aided tissue engineering enables the fabrication of multifunctional scaffolds that meet the structural, mechanical, and nutritional requirements based on optimized models. In this chapter, three-dimensional printing technology is described, and several limitations in the current direct printing approach are discussed. This chapter also describes indirect three-dimensional printing protocol to overcome convergent demands with a traditional method, without sacrificing the key advantage of material versatility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang R, Ma PX (2000) Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 52(2):430–438

    Article  CAS  Google Scholar 

  2. Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32(12):1728–1743

    Article  Google Scholar 

  3. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27(2):183–189

    Article  CAS  Google Scholar 

  4. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 7(1):23–38

    Article  CAS  Google Scholar 

  5. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35(5):1068–1077

    Article  CAS  Google Scholar 

  6. Mikos AG, Sarakinos G, Cima LG (1996) Biocompatible polymer membranes and methods of preparation of three-dimensional membrane structures. US Patent No.5,514,378

    Google Scholar 

  7. Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20(19):1783–1790

    Article  CAS  Google Scholar 

  8. Mooney DJ, Baldwin DF, Suh NP, Vacanti LP, Langer R (1996) Novel approach to fabricate porous sponges of poly(d, l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17(14):1417–1422

    Article  CAS  Google Scholar 

  9. Harris LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42(3):396–402

    Article  CAS  Google Scholar 

  10. Sun W, Lal P (2002) Recent development on computer aided tissue engineering – a review. Comput Methods Programs Biomed 67(2):85–103

    Article  Google Scholar 

  11. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Article  CAS  Google Scholar 

  12. Winder J, Cooke RS, Gray J, Fannin T, Fegan T (1999) Medical rapid prototyping and 3D CT in the manufacture of custom made cranial titanium plates. J Med Eng Technol 23(1):26–28

    Article  CAS  Google Scholar 

  13. Colin A, Boire JY (1997) A novel tool for rapid prototyping and development of simple 3D medical image processing applications on PCs. Comput Methods Programs Biomed 53(2):87–92

    Article  CAS  Google Scholar 

  14. Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103

    Article  CAS  Google Scholar 

  15. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378

    Article  CAS  Google Scholar 

  16. Yang SF, Leong KF, Du ZH, Chua CK (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11

    Article  CAS  Google Scholar 

  17. Dowler CA (1989) Automatic model building cuts design time, costs. Plastics Eng 45(4):43–45

    CAS  Google Scholar 

  18. Cima LG, Sachs E, Cima LG, Yoo J, Khanuja S, Borland SW, Wu BM, Giordano RA (1994) Computer-derived microstructure by 3D printing: bio- and structural materials. In: Proceedings of the SFF symposium

    Google Scholar 

  19. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ (1996) Solid free-form fabrication of drug delivery devices. J Control Release 40(1–2):77–87

    Article  CAS  Google Scholar 

  20. Griffith L, Wu BM, Cima MJ, Chaignaud B, Vacanti JP (1997) In vitro organogenesis of liver tissue. Ann N Y Acad Sci 831:382–397

    Article  CAS  Google Scholar 

  21. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  CAS  Google Scholar 

  22. Fisher JP, Vehof JWM, Dean D, van der Waerden JPCM, Holland TA, Mikos AG, Jansen JA (2002) Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res 59(3):547–556

    Article  CAS  Google Scholar 

  23. Leong KF, Phua KKS, Chua CK, Du ZH, Teo KOM (2001) Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. Proc Inst Mech Eng H 215(H2):191–201

    CAS  Google Scholar 

  24. Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP (1998) Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg 228(1):8–13

    Article  CAS  Google Scholar 

  25. Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74B(2):782–788

    Article  CAS  Google Scholar 

  26. Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20(1–2):49–56

    Article  Google Scholar 

  27. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    Article  CAS  Google Scholar 

  28. Buckwalter J (2004) Cartilage degeneration and regeneration. Clin Orthop Relat Res 427:S26–S26

    Article  Google Scholar 

  29. Buckwalter JA, Saltzman C, Brown T (2004) The impact of osteoarthritis – implications for research. Clin Orthop Relat Res 427:S6–S15

    Article  Google Scholar 

  30. Buckwalter JA, Martin JA (2006) Osteoarthritis. Adv Drug Deliv Rev 58(2):150–167

    Article  CAS  Google Scholar 

  31. Lapadula G, Iannone F, Zuccaro C, Grattagliano V, Covelli M, Patella V, Lo Bianco G, Pipitone V (1998) Chondrocyte phenotyping in human osteoarthritis. Clin Rheumatol 17(2):99–104

    Article  CAS  Google Scholar 

  32. Iannone F, Lapadula G (2008) Phenotype of chondrocytes in osteoarthritis. Biorheology 45(3–4):411–413

    Google Scholar 

  33. Hangody L, Kish G, Modis L, Szerb I, Gaspar L, Dioszegi Z, Kendik Z (2001) Mosaicplasty for the treatment of osteochondritis dissecans of the talus: two to seven year results in 36 patients. Foot Ankle Int 22(7):552–558

    CAS  Google Scholar 

  34. Martinek V, Imhoff AB (2003) Treatment of cartilage defects. Deutsche Zeitschrift Fur Sportmedizin 54(3):70–76

    Google Scholar 

  35. Spahn G, Kahl E, Muckley T, Hofmann GO, Klinger HM (2008) Arthroscopic knee chondroplasty using a bipolar radiofrequency-based device compared to mechanical shaver: results of a prospective, randomized, controlled study. Knee Surg Sports Traumatol Arthrosc 16(6):565–573

    Article  Google Scholar 

  36. Jerosch J, Filler T, Peuker E (2000) Is there an option for harvesting autologous osteochondral grafts without damaging weight-bearing areas in the knee joint? Knee Surg Sports Traumatol Arthrosc 8(4):237–240

    Article  CAS  Google Scholar 

  37. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  Google Scholar 

  38. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:Si32–Si34

    Article  Google Scholar 

  39. [Anon] (1999) The promise of tissue engineering. Sci Am 280(4):59–89

    Google Scholar 

  40. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  CAS  Google Scholar 

  41. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765

    Article  Google Scholar 

  42. Brittberg M, SjogrenJansson E, Lindahl A, Peterson L (1997) Influence of fibrin sealant (Tisseel(R)) on osteochondral defect repair in the rabbit knee. Biomaterials 18(3):235–242

    Article  CAS  Google Scholar 

  43. Shao XX, Hutmacher DW, Ho ST, Goh JCH, Lee EH (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27(7):1071–1080

    Article  CAS  Google Scholar 

  44. Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46(9):2524–2534

    Article  Google Scholar 

  45. Kreklau B, Sittinger M, Mensing MB, Voigt C, Berger G, Burmester GR, Rahmanzadeh R, Gross U (1999) Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20(18):1743–1749

    Article  CAS  Google Scholar 

  46. Holland TA, Bodde EWH, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75A(1):156–167

    Article  CAS  Google Scholar 

  47. Chen GP, Sato T, Tanaka J, Tateishi T (2006) Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater Sci Eng C 26(1):118–123

    Article  Google Scholar 

  48. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  49. Davidson ENB, van der Kraan PM, van den Berg WB (2007) TGF-beta and osteoarthritis. Osteoarthritis Cartilage 15(6):597–604

    Article  Google Scholar 

  50. Hunziker EB, Driesang IMK, Saager C (2001) Structural barrier principle for growth factor-based articular cartilage repair. Clin Orthop Relat Res 391:S182–S189

    Article  Google Scholar 

  51. Bhosale AM, Richardson JB (2008) Articular cartilage: structure, injuries and review of management. Br Med Bull 87(1):77–95

    Article  Google Scholar 

  52. Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2):137–146

    Article  CAS  Google Scholar 

  53. Wu BM, Cima MJ (1999) Effects of solvent-particle interaction kinetics on microstructure formation during three-dimensional printing. Polym Eng Sci 39(2):249–260

    Article  CAS  Google Scholar 

  54. Lee M, Dunn JCY, Wu BM (2005) Scaffold fabrication by indirect three-dimensional printing. Biomaterials 26(20):4281–4289

    Article  CAS  Google Scholar 

  55. Lee M, Wu BM, Dunn JCY (2008) Effect of scaffold architecture and pore size on smooth muscle cell growth. J Biomed Mater Res A 87A(4):1010–1016

    Article  CAS  Google Scholar 

  56. Kaihara S, Borenstein J, Koka R, Lalan S, Ochoa ER, Ravens M, Pien H, Cunningham B, Vacanti JP (2000) Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng 6(2):105–117

    Article  CAS  Google Scholar 

  57. Murugan R, Ramakrishna S (2006) Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng 12(3):435–447

    Article  CAS  Google Scholar 

  58. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89–R106

    Article  CAS  Google Scholar 

  59. Sill TJ, von Recum HA (2008) Electro spinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, M., Wu, B.M. (2012). Recent Advances in 3D Printing of Tissue Engineering Scaffolds. In: Liebschner, M. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 868. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-764-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-764-4_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-763-7

  • Online ISBN: 978-1-61779-764-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics