Skip to main content

Using Mini-genes to Identify Factors That Modulate Alternative Splicing

  • Protocol
  • First Online:
Exon Skipping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 867))

Abstract

Many genetic mutations result in the disruption of (alternative) splicing. Prime examples are the SMN1 and SMN2 genes: a silent mutation in SMN2 leads to the skipping of the constitutive exon 7 in the majority of SMN2 transcripts, while this exon is generally included in SMN1 transcripts. Lack of SMN is embryonic lethal and loss of SMN1 genes leads to a severe decrease in SMN protein and is associated with spinal muscular atrophy. There are proteins and drugs that can chance alternative splicing events, e.g. increase the inclusion of exon 7 in SMN2. This chapter describes mini-genes and methods that can be employed to screen for candidate proteins and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cartegni L, Krainer AR (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 10:120–125

    Article  PubMed  CAS  Google Scholar 

  2. Hastings ML, Krainer AR (2001) Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13:302–309

    Article  PubMed  CAS  Google Scholar 

  3. Law AJ, Kleinman JE, Weinberger DR, Weickert CS (2007) Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet 16:129–141

    Article  PubMed  CAS  Google Scholar 

  4. Matsuda A, Hirota T, Akahoshi M, Shimizu M, Tamari M, Miyatake A, Takahashi A, Nakashima K, Takahashi N, Obara K et al (2005) Coding SNP in tenascin-C Fn-III-D domain associates with adult asthma. Hum Mol Genet 14:2779–2786

    Article  PubMed  CAS  Google Scholar 

  5. Pagani F, Stuani C, Tzetis M, Kanavakis E, Efthymiadou A, Doudounakis S, Casals T, Baralle FE (2003) New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum Mol Genet 12:1111–1120

    Article  PubMed  CAS  Google Scholar 

  6. Pele M, Tiret L, Kessler JL, Blot S, Panthier JJ (2005) SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs. Hum Mol Genet 14:1417–1427

    Article  PubMed  CAS  Google Scholar 

  7. Shabalina SA, Zaykin DV, Gris P, Ogurtsov AY, Gauthier J, Shibata K, Tchivileva IE, Belfer I, Mishra B, Kiselycznyk C et al (2009) Expansion of the human mu-opioid receptor gene architecture: novel functional variants. Hum Mol Genet 18:1037–1051

    Article  PubMed  CAS  Google Scholar 

  8. Shimizu M, Matsuda A, Yanagisawa K, Hirota T, Akahoshi M, Inomata N, Ebe K, Tanaka K, Sugiura H, Nakashima K et al (2005) Functional SNPs in the distal promoter of the ST2 gene are associated with atopic dermatitis. Hum Mol Genet 14:2919–2927

    Article  PubMed  CAS  Google Scholar 

  9. Yang Y, Swaminathan S, Martin BK, Sharan SK (2003) Aberrant splicing induced by missense mutations in BRCA1: clues from a humanized mouse model. Hum Mol Genet 12:2121–2131

    Article  PubMed  CAS  Google Scholar 

  10. Young PJ, DiDonato CJ, Hu D, Kothary R, Androphy EJ, Lorson CL (2002) SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 beta 1. Hum Mol Genet 11:577–587

    Article  PubMed  CAS  Google Scholar 

  11. Zou F, Gopalraj RK, Lok J, Zhu H, Ling IF, Simpson JF, Tucker HM, Kelly JF, Younkin SG, Dickson DW et al (2008) Sex-dependent association of a common low-density lipoprotein receptor polymorphism with RNA splicing efficiency in the brain and Alzheimer’s disease. Hum Mol Genet 17:929–935

    Article  PubMed  CAS  Google Scholar 

  12. Griseri P, Bachetti T, Puppo F, Lantieri F, Ravazzolo R, Devoto M, Ceccherini I (2005) A common haplotype at the 5′ end of the RET proto-oncogene, overrepresented in Hirschsprung patients, is associated with reduced gene expression. Hum Mutat 25:189–195

    Article  PubMed  CAS  Google Scholar 

  13. Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 96:6307–6311

    Article  PubMed  CAS  Google Scholar 

  14. Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B (2000) Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA 97:9618–9623

    Article  PubMed  CAS  Google Scholar 

  15. Lorson CL, Androphy EJ (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9:259–265

    Article  PubMed  CAS  Google Scholar 

  16. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  PubMed  CAS  Google Scholar 

  17. Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3:97–110

    Article  PubMed  CAS  Google Scholar 

  18. Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609

    Article  PubMed  CAS  Google Scholar 

  19. Simic G (2008) Pathogenesis of proximal autosomal recessive spinal muscular atrophy. Acta Neuropathol 116:223–234

    Article  PubMed  CAS  Google Scholar 

  20. Jodelka FM, Ebert AD, Duelli DM, Hastings ML (2010) A feedback loop regulates splicing of the spinal muscular atrophy-modifying gene, SMN2. Hum Mol Genet 19:4906–17

    Article  PubMed  CAS  Google Scholar 

  21. Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AH, Prior TW (1998) Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet 63:1712–1723

    Article  PubMed  CAS  Google Scholar 

  22. Wirth B, Schmidt T, Hahnen E, Rudnik-Schöneborn S, Krawczak M, Müller-Myhsok B, Schönling J, Zerres K (1997) De novo rearrangements found in 2% of index patients with spinal muscular atrophy: mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling. Am J Hum Genet 61:1102–1111

    Article  PubMed  CAS  Google Scholar 

  23. Talbot K, Rodrigues NR, Ignatius J, Muntoni F, Davies KE (1997) Gene conversion at the SMN locus in autosomal recessive spinal muscular atrophy does not predict a mild phenotype. Neuromuscul Disord 7:198–201

    Article  PubMed  CAS  Google Scholar 

  24. Talbot K, Ponting CP, Theodosiou AM, Rodrigues NR, Surtees R, Mountford R, Davies KE (1997) Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism? Hum Mol Genet 6:497–500

    Article  PubMed  CAS  Google Scholar 

  25. McAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR, Prior TW, Burghes AH (1997) Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 60:1411–1422

    Article  PubMed  CAS  Google Scholar 

  26. Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K (1997) Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet 61:40–50

    Article  PubMed  CAS  Google Scholar 

  27. Wang CH, Xu J, Carter TA, Ross BM, Dominski MK, Bellcross CA, Penchaszadeh GK, Munsat TL, Gilliam TC (1996) Characterization of survival motor neuron (SMNT) gene deletions in asymptomatic carriers of spinal muscular atrophy. Hum Mol Genet 5:359–365

    Article  PubMed  CAS  Google Scholar 

  28. Parsons DW, McAndrew PE, Monani UR, Mendell JR, Burghes AH, Prior TW (1996) An 11 base pair duplication in exon 6 of the SMN gene produces a type I spinal muscular atrophy (SMA) phenotype: further evidence for SMN as the primary SMA-determining gene. Hum Mol Genet 5:1727–1732

    Article  PubMed  CAS  Google Scholar 

  29. Brahe C, Clermont O, Zappata S, Tiziano F, Melki J, Neri G (1996) Frameshift mutation in the survival motor neuron gene in a severe case of SMA type I. Hum Mol Genet 5:1971–1976

    Article  PubMed  CAS  Google Scholar 

  30. Lefebvre S, Burglen L, Frézal J, Munnich A, Melki J (1998) The role of the SMN gene in proximal spinal muscular atrophy. Hum Mol Genet 7:1531–1536

    Article  PubMed  CAS  Google Scholar 

  31. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269

    Article  PubMed  CAS  Google Scholar 

  32. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8:1177–1183

    Article  PubMed  CAS  Google Scholar 

  33. Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH, Androphy EJ (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19:63–66

    Article  PubMed  CAS  Google Scholar 

  34. Martins de Araujo M, Bonnal S, Hastings ML, Krainer AR, Valcarcel J (2009) Differential 3′ splice site recognition of SMN1 and SMN2 transcripts by U2AF and U2 snRNP. RNA 15:515–523

    Article  PubMed  Google Scholar 

  35. Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR (2006) Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 78:63–77

    Article  PubMed  CAS  Google Scholar 

  36. Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384

    Article  PubMed  CAS  Google Scholar 

  37. Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, Burghes AH, Kissel JT (2009) A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet 85:408–413

    Article  PubMed  CAS  Google Scholar 

  38. Zhang C, Li WH, Krainer AR, Zhang MQ (2008) RNA landscape of evolution for optimal exon and intron discrimination. Proc Natl Acad Sci USA 105:5797–5802

    Article  PubMed  CAS  Google Scholar 

  39. Janssen RJ, Wevers RA, Haussler M, Luyten JA, Steenbergen-Spanjers GC, Hoffmann GF, Nagatsu T, Van den Heuvel LP (2000) A branch site mutation leading to aberrant splicing of the human tyrosine hydroxylase gene in a child with a severe extrapyramidal movement disorder. Ann Hum Genet 64:375–382

    Article  PubMed  CAS  Google Scholar 

  40. Wu Q, Krainer AR (1997) Splicing of a divergent subclass of AT-AC introns requires the major spliceosomal snRNAs. RNA 3:586–601

    PubMed  CAS  Google Scholar 

  41. Hastings ML, Allemand E, Duelli DM, Myers MP, Krainer AR (2007) Control of pre-mRNA splicing by the general splicing factors PUF60 and U2AF(65). PLoS One 2:e538

    Article  PubMed  Google Scholar 

  42. Caceres JF, Misteli T, Screaton GR, Spector DL, Krainer AR (1997) Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J Cell Biol 138:225–238

    Article  PubMed  CAS  Google Scholar 

  43. Misteli T, Caceres JF, Clement JQ, Krainer AR, Wilkinson MF, Spector DL (1998) Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo. J Cell Biol 143:297–307

    Article  PubMed  CAS  Google Scholar 

  44. Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34:460–463

    Article  PubMed  CAS  Google Scholar 

  45. Kashima T, Rao N, David CJ, Manley JL (2007) hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum Mol Genet 16:3149–3159

    Article  PubMed  CAS  Google Scholar 

  46. Kashima T, Rao N, Manley JL (2007) An intronic element contributes to splicing repression in spinal muscular atrophy. Proc Natl Acad Sci USA 104:3426–3431

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Morse, R., Todd, A.G., Young, P.J. (2012). Using Mini-genes to Identify Factors That Modulate Alternative Splicing. In: Aartsma-Rus, A. (eds) Exon Skipping. Methods in Molecular Biology, vol 867. Humana Press. https://doi.org/10.1007/978-1-61779-767-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-767-5_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-766-8

  • Online ISBN: 978-1-61779-767-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics