Skip to main content

The Whereabouts of 2D Gels in Quantitative Proteomics

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

Two-dimensional gel electrophoresis has been instrumental in the development of proteomics. Although it is no longer the exclusive scheme used for proteomics, its unique features make it a still highly valuable tool, especially when multiple quantitative comparisons of samples must be made, and even for large samples series. However, quantitative proteomics using 2D gels is critically dependent on the performances of the protein detection methods used after the electrophoretic separations. This chapter therefore examines critically the various detection methods (radioactivity, dyes, fluorescence, and silver) as well as the data analysis issues that must be taken into account when quantitative comparative analysis of 2D gels is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacGillivray AJ, Rickwood D (1974) The ­heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur J Biochem 41:181–190

    Article  PubMed  CAS  Google Scholar 

  2. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  3. Anderson NL, Taylor J, Scandora AE et al (1981) The TYCHO system for computer analysis of two-dimensional gel electrophoresis patterns. Clin Chem 27:1807–1820

    PubMed  CAS  Google Scholar 

  4. Vincens P, Paris N, Pujol JL et al (1986) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part I: data acquisition. Electrophoresis 7:347–356

    Article  CAS  Google Scholar 

  5. Vincens P (1986) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part II: spot detection and integration. Electrophoresis 7:357–367

    Article  CAS  Google Scholar 

  6. Vincens P, Tarroux P (1987) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part III: spot list matching. Electrophoresis 8:100–107

    Article  CAS  Google Scholar 

  7. Tarroux P, Vincens P, Rabilloud T (1987) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part V: data analysis. Electrophoresis 8:187–199

    Article  CAS  Google Scholar 

  8. Pun T, Hochstrasser DF, Appel RD et al (1988) Computerized classification of two-dimensional gel electrophoretograms by correspondence analysis and ascendant hierarchical clustering. Appl Theor Electrophor 1:3–9

    PubMed  CAS  Google Scholar 

  9. Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    PubMed  CAS  Google Scholar 

  10. Aebersold RH, Leavitt J, Saavedra RA et al (1987) Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci USA 8:6970–6974

    Article  Google Scholar 

  11. Aebersold RH, Pipes G, Hood LE, Ken SBH (1988) N-terminal and internal sequence determination of microgram amounts of proteins separated by isoelectric focusing in immobilized pH gradients. Electrophoresis 9: 520–530

    Article  PubMed  CAS  Google Scholar 

  12. Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203:173–179

    Article  PubMed  CAS  Google Scholar 

  13. Rasmussen HH, van Damme J, Puype M et al (1992) Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes. Electrophoresis 13:960–969

    Article  PubMed  CAS  Google Scholar 

  14. Yates JR, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436

    Article  PubMed  CAS  Google Scholar 

  15. Yates JR, McCormack AL, Schieltz D et al (1997) Direct analysis of protein mixtures by tandem mass spectrometry. J Prot Chem 16:495–497

    Article  CAS  Google Scholar 

  16. Smolka M, Zhou H, Aebersold R (2002) Quantitative protein profiling using two-dimensional gel electrophoresis, isotope-coded affinity tag labeling, and mass spectrometry. Mol Cell Proteomics 1:19–29

    Article  PubMed  CAS  Google Scholar 

  17. Zhou S, Bailey MJ, Dunn MJ et al (2005) A quantitative investigation into the losses of proteins at different stages of a two-dimensional gel electrophoresis procedure. Proteomics 5:2739–2747

    Article  PubMed  CAS  Google Scholar 

  18. Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070

    Article  PubMed  CAS  Google Scholar 

  19. Eravci M, Fuxius S, Broedel O et al (2008) The whereabouts of transmembrane proteins from rat brain synaptosomes during two-dimensional gel electrophoresis. Proteomics 8:1762–1770

    Article  PubMed  CAS  Google Scholar 

  20. Rabilloud T, Vaezzadeh AR, Potier N et al (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28:816–843

    Article  PubMed  CAS  Google Scholar 

  21. Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73:2064–2077

    Article  PubMed  CAS  Google Scholar 

  22. Rabilloud T (2010) Variations on a theme: changes to electrophoretic separations that can make a difference. J Proteomics 73: 1562–1572

    Article  PubMed  CAS  Google Scholar 

  23. Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6:5385–5408

    Article  PubMed  CAS  Google Scholar 

  24. Bonner WM, Laskey RA (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88

    Article  PubMed  CAS  Google Scholar 

  25. Perng GS, Rulli RD, Wilson DL, Perry GW (1988) A comparison of fluorographic methods for the detection of 35S-labeled proteins in polyacrylamide gels. Anal Biochem 173:387–392

    Article  PubMed  CAS  Google Scholar 

  26. Laskey RA, Mills AD (1975) Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem 56:335–341

    Article  PubMed  CAS  Google Scholar 

  27. Duncan R, McConkey EH (1982) How many proteins are there in a typical mammalian cell? Clin Chem 28:749–755

    PubMed  CAS  Google Scholar 

  28. Bravo R, Fey SJ, Bellatin J et al (1981) Identification of a nuclear and of a cytoplasmic polypeptide whose relative proportions are sensitive to changes in the rate of cell proliferation. Exp Cell Res 136:311–319

    Article  PubMed  CAS  Google Scholar 

  29. Bravo R, Frank R, Blundell PA, Macdonald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature 326:515–517

    Article  PubMed  CAS  Google Scholar 

  30. Bravo R, Fey SJ, Small JV et al (1981) Coexistence of three major isoactins in a single sarcoma 180 cell. Cell 25:195–202

    Article  PubMed  CAS  Google Scholar 

  31. Sobel A, Tashjian AH Jr (1983) Distinct patterns of cytoplasmic protein phosphorylation related to regulation of synthesis and release of prolactin by GH cells. J Biol Chem 258:10312–10324

    PubMed  CAS  Google Scholar 

  32. Patterson SD, Latter GI (1993) Evaluation of storage phosphor imaging for quantitative analysis of 2-D gels using the Quest II system. Biotechniques 15:1076–1083

    PubMed  CAS  Google Scholar 

  33. Zhou SB, Mann CJ, Dunn MJ et al (2006) Measurement of specific radioactivity in proteins separated by two-dimensional gel electrophoresis. Electrophoresis 27:1147–1153

    Article  PubMed  CAS  Google Scholar 

  34. Choi JK, Tak KH, Jin LT et al (2002) Background-free, fast protein staining in sodium dodecyl sulfate polyacrylamide gel using counterion dyes, zincon and ethyl violet. Electrophoresis 23:4053–4059

    Article  PubMed  CAS  Google Scholar 

  35. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  36. Switzer RC, Merril CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98:231–237

    Article  PubMed  CAS  Google Scholar 

  37. Rabilloud T (1990) Mechanisms of protein silver staining in polyacrylamide gels: a 10-year synthesis. Electrophoresis 11:785–794

    Article  PubMed  CAS  Google Scholar 

  38. Blum H, Beier H, Gross H (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  39. Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1:1852–1858

    Article  PubMed  CAS  Google Scholar 

  40. Scheler C, Lamer S, Pan Z et al (1998) Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis 19:918–927

    Article  PubMed  CAS  Google Scholar 

  41. Chevalier F, Centeno D, Rofidal V et al (2006) Different impact of staining procedures using visible stains and fluorescent dyes for large-scale investigation of proteomes by MALDI-TOF mass spectrometry. J Proteome Res 5:512–520

    Article  PubMed  CAS  Google Scholar 

  42. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  43. Richert S, Luche S, Chevallet M et al (2004) About the mechanism of interference of silver staining with peptide mass spectrometry. Proteomics 4:909–916

    Article  PubMed  CAS  Google Scholar 

  44. Chevallet M, Luche S, Diemer H et al (2008) Sweet silver: a formaldehyde-free silver staining using aldoses as developing agents, with enhanced compatibility with mass spectrometry. Proteomics 8:4853–4861

    Article  PubMed  CAS  Google Scholar 

  45. Jackowski G, Liew CC (1980) Fluorescamine staining of nonhistone chromatin proteins as revealed by two-dimensional polyacrylamide gel electrophoresis. Anal Biochem 102:321–325

    Article  PubMed  CAS  Google Scholar 

  46. Urwin VE, Jackson P (1991) A multiple high-resolution mini two-dimensional polyacrylamide gel electrophoresis system: imaging two-dimensional gels using a cooled charge-coupled device after staining with silver or labeling with fluorophore. Anal Biochem 195:30–37

    Article  PubMed  CAS  Google Scholar 

  47. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  CAS  Google Scholar 

  48. Tonge R, Shaw J, Middleton B et al (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki Y, Yokoyama K (2008) Design and ­synthesis of ICT-based fluorescent probe for high-sensitivity protein detection and application to rapid protein staining for SDS-PAGE. Proteomics 8:2785–2790

    Article  PubMed  CAS  Google Scholar 

  50. Cong WT, Jin LT, Hwang SY, Choi JK (2008) Fast fluorescent staining of protein in sodium dodecyl sulfate polyacrylamide gels by palmatine. Electrophoresis 29:417–423

    Article  PubMed  CAS  Google Scholar 

  51. Mackintosh JA, Choi HY, Bae SH et al (2003) A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3:2273–2288

    Article  PubMed  CAS  Google Scholar 

  52. Berggren K, Chernokalskaya E, Steinberg TH et al (2000) Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21:2509–2521

    Article  PubMed  CAS  Google Scholar 

  53. Rabilloud T, Strub JM, Luche S et al (2001) A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 1:699–704

    Article  PubMed  CAS  Google Scholar 

  54. Lamanda A, Zahn A, Roder D, Langen H (2004) Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution. Proteomics 4:599–608

    Article  PubMed  CAS  Google Scholar 

  55. Fazekas SDS, Webster RG, Datyner A (1963) Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim Biophys Acta 71:377–391

    Article  Google Scholar 

  56. Steinberg TH, Jones LJ, Haugland RP, Singer VL (1996) SYPRO orange and SYPRO red protein gel stains: one-step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal Biochem 239:223–237

    Article  PubMed  CAS  Google Scholar 

  57. Malone JP, Radabaugh MR, Leimgruber RM, Gerstenecker GS (2001) Practical aspects of fluorescent staining for proteomic applications. Electrophoresis 22:919–932

    Article  PubMed  CAS  Google Scholar 

  58. Daban JR, Bartolome S, Samso M (1991) Use of the hydrophobic probe Nile red for the fluorescent staining of protein bands in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 199:169–174

    Article  PubMed  CAS  Google Scholar 

  59. Steinberg TH, Lauber WM, Berggren K et al (2000) Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution. Electrophoresis 21:497–508

    Article  PubMed  CAS  Google Scholar 

  60. Luche S, Lelong C, Diemer H et al (2007) Ultrafast coelectrophoretic fluorescent staining of proteins with carbocyanines. Proteomics 7:3234–3244

    Article  PubMed  CAS  Google Scholar 

  61. Hart C, Schulenberg B, Steinberg TH et al (2003) Detection of glycoproteins in polyacrylamide gels and on electroblots using Pro-Q Emerald 488 dye, a fluorescent periodate Schiff-base stain. Electrophoresis 24:588–598

    Article  PubMed  CAS  Google Scholar 

  62. Schulenberg B, Goodman TN, Aggeler R et al (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis 25:2526–2532

    Article  PubMed  CAS  Google Scholar 

  63. Garrels JI (1979) Two dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J Biol Chem 254:7961–7977

    PubMed  CAS  Google Scholar 

  64. Vo KP, Miller MJ, Geiduschek EP et al (1981) Computer analysis of two-dimensional gels. Anal Biochem 112:258–271

    Article  PubMed  CAS  Google Scholar 

  65. Tarroux P (1983) Analysis of protein patterns during differentiation using 2-D electrophoresis and computer multidimensional classification. Electrophoresis 4:63–70

    Article  CAS  Google Scholar 

  66. Appel R, Hochstrasser D, Roch C et al (1988) Automatic classification of two-dimensional gel electrophoresis pictures by heuristic clustering analysis: a step toward machine learning. Electrophoresis 9:136–142

    Article  PubMed  CAS  Google Scholar 

  67. Corbett JM, Dunn MJ, Posch A, Gorg A (1994) Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 15:1205–1211

    Article  PubMed  CAS  Google Scholar 

  68. Blomberg A, Blomberg L, Norbeck J et al (1995) Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 16:1935–1945

    Article  PubMed  CAS  Google Scholar 

  69. Choe LH, Lee KH (2003) Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis. Electrophoresis 24: 3500–3507

    Article  PubMed  CAS  Google Scholar 

  70. Eravci M, Fuxius S, Broedel O et al (2007) Improved comparative proteome analysis based on two-dimensional gel electrophoresis. Proteomics 7:513–523

    Article  PubMed  CAS  Google Scholar 

  71. Anderson NG, Anderson NL (1978) Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing. Anal Biochem 85:331–340

    Article  PubMed  CAS  Google Scholar 

  72. Anderson NL, Anderson NG (1978) Analytical techniques for cell fractions. XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis. Anal Biochem 85:341–354

    Article  PubMed  CAS  Google Scholar 

  73. Celis JE (2004) Gel-based proteomics: what does MCP expect? Mol Cell Proteomics 3:949

    PubMed  CAS  Google Scholar 

  74. Hackett M (2008) Science, marketing and wishful thinking in quantitative proteomics. Proteomics 8:4618–4623

    Article  PubMed  CAS  Google Scholar 

  75. Fuxius S, Eravci M, Broedel O et al (2008) Technical strategies to reduce the amount of “false significant” results in quantitative proteomics. Proteomics 8:1780–1784

    Article  PubMed  CAS  Google Scholar 

  76. Karp NA, Lilley KS (2007) Design and analysis issues in quantitative proteomics studies. Proteomics 7:42–50

    Article  PubMed  Google Scholar 

  77. Karp NA, McCormick PS, Russell MR, Lilley KS (2007) Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis. Mol Cell Proteomics 6: 1354–1364

    Article  PubMed  CAS  Google Scholar 

  78. Eravci M, Mansmann U, Broedel O et al (2009) Strategies for a reliable biostatistical analysis of differentially expressed spots from two-dimensional electrophoresis gels. J Proteome Res 8:2601–2607

    Article  PubMed  CAS  Google Scholar 

  79. Diz AP, Carvajal-Rodriguez A, Skibinski DO (2011) Multiple hypothesis testing in proteomics: a strategy for experimental work. Mol Cell Proteomics 10:M110.004374

    Google Scholar 

  80. Diz AP, Truebano M, Skibinski DO (2009) The consequences of sample pooling in ­proteomics: an empirical study. Electrophoresis 30:2967–2975

    Article  PubMed  CAS  Google Scholar 

  81. Karp NA, Lilley KS (2009) Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9:388–397

    Article  PubMed  CAS  Google Scholar 

  82. Rabilloud T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30:S174–S180

    Article  PubMed  Google Scholar 

  83. Petrak J, Ivanek R, Toman O et al (2008) Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 8:1744–1749

    Article  PubMed  CAS  Google Scholar 

  84. Wang P, Bouwman FG, Mariman EC (2009) Generally detected proteins in comparative proteomics – a matter of cellular stress response? Proteomics 9:2955–2966

    Article  PubMed  CAS  Google Scholar 

  85. Aicher L, Wahl D, Arce A et al (1998) New insights into cyclosporine A nephrotoxicity by proteome analysis. Electrophoresis 19:1998–2003

    Article  PubMed  CAS  Google Scholar 

  86. Anderson NL, EsquerBlasco R, Richardson F et al (1996) The effects of peroxisome proliferators on protein abundances in mouse liver. Toxicol Appl Pharmacol 137:75–89

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Rabilloud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rabilloud, T. (2012). The Whereabouts of 2D Gels in Quantitative Proteomics. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics