Skip to main content

Visualizing GABAB Receptor Internalization and Intracellular Trafficking

  • Protocol
  • First Online:
Visualization Techniques

Part of the book series: Neuromethods ((NM,volume 70))

  • 1471 Accesses

Abstract

The number of neurotransmitter receptors on the plasma membrane is regulated by the traffic of ­intracellular vesicles. Golgi-derived vesicles provide newly synthesized receptors to the cell surface, whereas clathrin-coated vesicles are the initial vehicles for sequestration of surface receptors, which are ultimately degraded or recycled. Here we use confocal laser scanning microscopy and multiple immunofluorescence analysis to study constitutive GABAB receptor internalization and intracellular trafficking in the single-celled organism Paramecium primaurelia. GABAB receptors display a dotted vesicular pattern dispersed on the cell surface and throughout the cytoplasm and are internalized via clathrin-dependent and -independent endocytosis. Indeed, GABAB receptors colocalize with the adaptin complex AP2, which is implicated in the selective recruitment of integral membrane proteins to clathrin-coated vesicles, and with caveolin 1, which is associated with uncoated membrane invaginations. After internalization, receptors are targeted to the early endosomes, characterized by the molecular markers EEA1 and rab5. Some of these receptors, addressed to recycling back to the plasma membrane, move from the early endosomes to the endosomal recycling compartment that is characterized by the presence of rab4 immunoreactivity. Receptors that are addressed to degradation exit the endosomal pathway at the early endosomes and move to the late endosome–lysosome pathway. In fact, some of the GABAB-positive compartments were identified as lysosomal structures by double staining with the lysosomal marker LAMP1. GABAB vesicle structures also colocalize with TGN38- and rab11-immunoreactivity. TGN38 and rab11 proteins are associated with post-Golgi and recycling endosomes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M et al (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54:247–264

    Article  PubMed  CAS  Google Scholar 

  2. Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    PubMed  CAS  Google Scholar 

  3. Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 366:381–416

    Article  PubMed  CAS  Google Scholar 

  4. Royle SJ, Murrell-Lagnado RD (2003) Constitutive cycling: a general mechanism to regulate cell surface proteins. Bioessays 25:39–46

    Article  PubMed  Google Scholar 

  5. Tehrani MHJ, Barnes EM Jr (1997) Sequestration of gamma-aminobutyric acid A receptors on clathrin-coated vesicles during chronic benzodiazepine administration in vivo. J Pharmacol Exp Ther 283:384–390

    PubMed  CAS  Google Scholar 

  6. Grampp T, Notz V, Broll I, Fischer N, Benke D (2008) Constitutive, agonist-accelerated, recycling and lysosomal degradation of GABAB receptors in cortical neurons. Mol Cell Neurosci 39:628–637

    Article  PubMed  CAS  Google Scholar 

  7. Traub LM (2010) Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 10:583–596

    Article  Google Scholar 

  8. Kirchhausen T (1999) Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 15:705–732

    Article  PubMed  CAS  Google Scholar 

  9. Takei K, Hauke V (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11:385–391

    Article  PubMed  CAS  Google Scholar 

  10. Traub LM (2003) Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol 163:203–208

    Article  PubMed  CAS  Google Scholar 

  11. Owen DJ, Collins BM, Evans PR (2004) Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20:153–191

    Article  PubMed  CAS  Google Scholar 

  12. Rodemer C, Haucke V (2008) Clathrin/AP-2-dependent endocytosis: a novel playground for the pharmacological toolbox? Handb Exp Pharmacol 186:105–122

    Article  PubMed  CAS  Google Scholar 

  13. Shupliakov O, Low P, Grabs D, Gad H, Chen H, David C et al (1997) Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276:259–263

    Article  PubMed  CAS  Google Scholar 

  14. Cupers P, Jadhav AP, Kirchhausen T (1998) Assembly of clathrin coats disrupts the association between Eps15 and AP-2 adaptors. J Biol Chem 23:1847–1850

    Article  Google Scholar 

  15. Nichols BJ, Lippincott-Schwartz J (2001) Endocytosis without clathrin coats. Trends Cell Biol 11:406–412

    Article  PubMed  CAS  Google Scholar 

  16. Tsao PI, von Zastrow M (2001) Diversity and specificity in the regulated endocytic membrane trafficking of G-protein-coupled receptors. Pharmacol Ther 89:39–147

    Article  Google Scholar 

  17. Johannes L, Lamaze C (2002) Clathrin-dependent or not: is it still the question? Traffic 3:443–451

    Article  PubMed  CAS  Google Scholar 

  18. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    Article  PubMed  CAS  Google Scholar 

  19. von Zastrow M, Kobilka BK (1994) Antagonist-dependent and -independent steps in the mechanism of andrenergic receptor internalization. J Biol Chem 269:18448–18452

    Google Scholar 

  20. Zhang J, Ferguson SS, Barak LS, Menard L, Caron MG (1996) Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem 271:18302–18305

    Article  PubMed  CAS  Google Scholar 

  21. Raposo G, Dunia I, Delavier-Klutchko C, Kaveri S, Strosberg AD, Benedetti EL (1989) Internalization of beta–adrenergic receptor in A431 cells involves non-coated vesicles. Eur J Cell Biol 50:340–352

    PubMed  CAS  Google Scholar 

  22. Dupree P, Parton RG, Raposo G, Kurzchalia TV, Simons K (1993) Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J 12:1597–1605

    PubMed  CAS  Google Scholar 

  23. Roettger BF, Rentsch RU, Pinon D, Holicky E, Hadac E, Larkin JM et al (1995) Dual pathways of internalization of the cholecystokinin receptor. J Cell Biol 128:1029–1041

    Article  PubMed  CAS  Google Scholar 

  24. Daukas J, Zigmond SH (1985) Inhibition of receptor-mediated but not fluid-phase endocytosis in polymorphonuclear leukocytes. J Cell Biol 101:1673–1679

    Article  PubMed  CAS  Google Scholar 

  25. Heuser JE, Anderson RG (1989) Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400

    Article  PubMed  CAS  Google Scholar 

  26. Wang L-H, Rothberg KG, Anderson RGW (1993) Mis-assembly of clathrin lattices on endosomes reveals regulatory switch for coated pit formation. J Cell Biol 123:1107–1117

    Article  PubMed  CAS  Google Scholar 

  27. Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of selected macromolecules. J Cell Biol 127:1217–1232

    Article  PubMed  CAS  Google Scholar 

  28. Lamaze C, Schmid SL (1995) The emergence of clathrin-independent pinocytic pathways. Curr Opin Cell Biol 7:573–580

    Article  PubMed  CAS  Google Scholar 

  29. Seabra MC, Mules EH, Hume AN (2002) Rab GTPases, intracellular traffic and disease. Trends Mol Med 8:23–30

    Article  PubMed  CAS  Google Scholar 

  30. Seachrist JL, Ferguson SSG (2003) Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sci 74:225–235

    Article  PubMed  CAS  Google Scholar 

  31. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103:11821–11827

    Article  PubMed  CAS  Google Scholar 

  32. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  PubMed  CAS  Google Scholar 

  33. Allen RD, Fok AK (2000) Membrane trafficking and processing in Paramecium. Int Rev Cytol 198:277–318

    Article  PubMed  CAS  Google Scholar 

  34. Plattner H, Kissmehl R (2003) Molecular aspects of membrane trafficking in Paramecium. Int Rev Cytol 232:185–216

    Article  PubMed  CAS  Google Scholar 

  35. Allen RD (1988) Cytology. In: Görtz H-D (ed) Paramecium. Springer, Berlin, pp 4–40

    Google Scholar 

  36. Nilsson JR, van Deurs P (1983) Coated pits and pinocytosis in Tetrahymena. J Cell Sci 63:209–222

    PubMed  CAS  Google Scholar 

  37. Allen RD, Fok AK (1993) Endosomal membrane traffic of ciliates. In: Plattner H (ed) Advances in cell and molecular biology of membranes, membrane traffic in protozoa. JAI Press, Greenwich, CT, pp 283–309

    Google Scholar 

  38. Ramoino P, Fronte P, Fato M, Beltrame F, Robello M, Diaspro A (2001) Fluid phase and receptor mediated endocytosis in Paramecium. Eur Biophys J 30:305–312

    Article  PubMed  CAS  Google Scholar 

  39. Ramoino P, Gallus L, Beltrame F, Diaspro A, Fato M, Rubini P et al (2006) Endocytosis of GABAB receptors modulates membrane excitability in the single-celled organism Paramecium. J Cell Sci 119:2056–2064

    Article  PubMed  CAS  Google Scholar 

  40. Ramoino P, Usai C, Beltrame F, Fato M, Gallus L, Tagliaferro G et al (2005) GABAB receptor intracellular trafficking after internalization in Paramecium. Microsc Res Tech 68:290–295

    Article  PubMed  CAS  Google Scholar 

  41. Manders EM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual colour confocal images. J Microsc 169:375–382

    Article  Google Scholar 

  42. Gonzalez RC, Wintz P (1987) Digital image processing, 2nd edn. Addison Wesley, Massachusetts

    Google Scholar 

  43. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003

    Article  PubMed  CAS  Google Scholar 

  44. Fok AK, Leung SS-K, Chun DP, Allen RD (1985) Modulation of the digestive lysosomal system in Paramecium caudatum. II. Physiological effects of cytochalasin B, colchicine and trifluoperazine. Eur J Cell Biol 37:27–34

    PubMed  CAS  Google Scholar 

  45. Fok AK, Leung SS-K, Allen RD (1984) Modulation of the digestive lysosomal system in Paramecium caudatum. I. Effects of temperature. Eur J Cell Biol 34:265–270

    PubMed  CAS  Google Scholar 

  46. Mallet WG, Maxfield FR (1999) Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways. J Cell Biol 146:345–359

    Article  PubMed  CAS  Google Scholar 

  47. Estève J-C (1972) L’appareil de Golgi des Ciliés. Ultrastructure, particulièrement chez Paramecium. J Protozool 19:609–618

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ramoino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ramoino, P., Bianchini, P., Diaspro, A., Usai, C. (2012). Visualizing GABAB Receptor Internalization and Intracellular Trafficking. In: Badoer, E. (eds) Visualization Techniques. Neuromethods, vol 70. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-897-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-897-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-896-2

  • Online ISBN: 978-1-61779-897-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics