Skip to main content

Binding Stoichiometry and Affinity of Fluorescent Dyes to Proteins in Different Structural States

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

Protocol of determination of binding stoichiometry and affinity of fluorescent dyes with proteins in different structural states is proposed. The proposed approach is based on the spectrophotometric determination of concentrations of dye bound to protein and free dye in solutions prepared by equilibrium microdialysis. This technique allows also determining spectral properties of the bound dyes. The restrictions of the use of dye fluorescence intensity for characterization of its interaction with the target protein are discussed. It is shown that the dependence of the dye fluorescence intensity on its optical density together with the data on its binding parameter can give information about the dye fluorescence quantum yield. All procedures are illustrated by interaction of 8-anilino-1-naphthalenesulfonate (ANS) with bovine serum albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANS:

8-Anilino-1-naphthalenesulfonate

BSA:

Bovine serum albumin

ThT:

Thioflavin T

QS:

Quinine sulfate

References

  1. Stryer L (1965) The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol 13:482–495

    Article  PubMed  CAS  Google Scholar 

  2. Peters T Jr (1996) All about albumin: biochemistry, genetics, and medical application. Academic Press, NewYork

    Google Scholar 

  3. LeVine H III (1993) Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  PubMed  CAS  Google Scholar 

  4. Levine H III (1995) Soluble multimeric Alzheimer beta(1–40) pre-amyloid complexes in dilute solution. Neurobiol Aging 16:755–764

    Article  PubMed  CAS  Google Scholar 

  5. Groenning M (2009) Binding mode of thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J Chem Biol 3:1–18

    Article  PubMed  Google Scholar 

  6. Voropay ES, Samtsov MP, Kaplevsky KN, Maskevich AA, Stepuro VI, Povarova OI, Kuznetsova IM, Turoverov KK, Fink AL, Uversky VN (2003) Spectral properties of thioflavin T and its complexes with amyloid fibrils. J Appl Spectrosc 70:868–874

    Article  Google Scholar 

  7. Maskevich AA, Stsiapura VI, Kuzmitsky VA, Kuznetsova IM, Povarova OI, Uversky VN, Turoverov KK (2007) Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J Proteome Res 6:1392–1401

    Article  PubMed  CAS  Google Scholar 

  8. Sulatskaya AI, Kuznetsova IM, Maskevich AA, Uversky VN, Turoverov KK (2010) Non-radiative deactivation of the excited state of thioflavin T: dependence on solvent viscosity and temperature. PLoS One 5:e15385

    Article  PubMed  Google Scholar 

  9. Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2004) Natively disordered proteins, vol I. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 271–353

    Google Scholar 

  10. Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas AF, Gilmanshin RI (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128

    Article  PubMed  CAS  Google Scholar 

  11. Semisotnov GV, Rodionova NA, Kutyshenko VP, Ebert B, Blanck J, Ptitsyn OB (1987) Sequential mechanism of refolding of carbonic anhydrase B. FEBS Lett 224:9–13

    Article  PubMed  CAS  Google Scholar 

  12. Goto Y, Fink AL (1989) Conformational states of beta-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry 28:945–952

    Article  PubMed  CAS  Google Scholar 

  13. Rodionova NA, Semisotnov GV, Kutyshenko VP, Uverskii VN, Bolotina IA (1989) Staged equilibrium of carbonic anhydrase unfolding in strong denaturants. Mol Biol (Mosk) 23:683–692

    CAS  Google Scholar 

  14. Ptitsyn OB, Pain RH, Semisotnov GV, Zerovnik E, Razgulyaev OI (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262:20–24

    Article  PubMed  CAS  Google Scholar 

  15. Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    Article  PubMed  CAS  Google Scholar 

  16. Povarova OI, Kuznetsova IM, Turoverov KK (2010) Differences in the pathways of proteins unfolding induced by urea and guanidine hydrochloride: molten globule state and aggregates. PLoS One 5:e15035

    Article  PubMed  CAS  Google Scholar 

  17. Dolgikh DA, Gilmanshin RI, Brazhnikov EV, Bychkova VE, Semisotnov GV, Venyaminov S, Ptitsyn OB (1981) Alpha-lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett 136:311–315

    Article  PubMed  CAS  Google Scholar 

  18. Uversky VN, Li, J, Fink AL (2001) Evidence for a partially-folded intermediate in α-synuclein fibrillation. J Biol Chem 276(14):10737–10744

    Article  PubMed  CAS  Google Scholar 

  19. Uversky VN, Ptitsyn OB (1996) All-or-none solvent-induced transitions between native, molten globule and unfolded states in globular proteins. Fold Des 1:117–122

    Article  PubMed  CAS  Google Scholar 

  20. Uversky VN, Winter S, Lober G (1998) Self-association of 8-anilino-1-naphthalene-sulfonate molecules: spectroscopic characterization and application to the investigation of protein folding. Biochim Biophys Acta 1388:133–142

    Article  PubMed  CAS  Google Scholar 

  21. Klimtchuk E, Venyaminov S, Kurian E, Wessels W, Kirk W, Prendergast FG (2007) Photophysics of ANS. I. Protein–ANS complexes: intestinal fatty acid binding protein and single-trp mutants. Biophys Chem 125:1–12

    Article  PubMed  CAS  Google Scholar 

  22. Kirk W (2007) Photophysics of ANS. II: charge transfer character of near-UV absorption and consequences for ANS spectroscopy. Biophys Chem 125:13–23

    Article  PubMed  CAS  Google Scholar 

  23. Kirk W, Klimtchuk E (2007) Photophysics of ANS. III: circular dichroism of ANS and anilinonaphthalene in I-FABP. Biophys Chem 125:24–31

    Article  PubMed  CAS  Google Scholar 

  24. Kirk W, Wessels W (2007) Photophysics of ANS. IV. Electron transfer quenching of ANS in alcoholic solvents and mixtures. Biophys Chem 125:32–49

    Article  PubMed  CAS  Google Scholar 

  25. Kirk W, Kurian E, Wessels W (2007) Photophysics of ANS. V. Decay modes of ANS in proteins: the IFABP–ANS complex. Biophys Chem 125:50–58

    Article  PubMed  CAS  Google Scholar 

  26. Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499

    Article  PubMed  CAS  Google Scholar 

  27. Neyroz P, Zambelli B, Ciurli S (2006) Intrinsically disordered structure of Bacillus pasteurii UreG as revealed by steady-state and time-resolved fluorescence spectroscopy. Biochemistry 45:8918–8930

    Article  PubMed  CAS  Google Scholar 

  28. Bailey RW, Dunker AK, Brown CJ, Garner EC, Griswold MD (2001) Clusterin, a binding protein with a molten globule-like region. Biochemistry 40:11828–11840

    Article  PubMed  CAS  Google Scholar 

  29. Lavery DN, McEwan IJ (2008) Structural characterization of the native NH2-terminal transactivation domain of the human androgen receptor: a collapsed disordered conformation underlies structural plasticity and protein-induced folding. Biochemistry 47:3360–3369

    Article  PubMed  CAS  Google Scholar 

  30. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881

    Article  PubMed  CAS  Google Scholar 

  31. Wilson MR, Easterbrook-Smith SB (2000) Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25:95–98

    Article  PubMed  CAS  Google Scholar 

  32. Calero M, Tokuda T, Rostagno A, Kumar A, Zlokovic B, Frangione B, Ghiso J (1999) Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 344(Pt 2):375–383

    Article  PubMed  CAS  Google Scholar 

  33. Bailey R, Griswold MD (1999) Clusterin in the male reproductive system: localization and possible function. Mol Cell Endocrinol 151:17–23

    Article  PubMed  CAS  Google Scholar 

  34. Lavery DN, McEwan IJ (2005) Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 391:449–464

    Article  PubMed  CAS  Google Scholar 

  35. Uversky VN, Winter S, Lober G (1996) Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys Chem 60:79–88

    Article  PubMed  CAS  Google Scholar 

  36. Eftink MR, Ghiron CA (1976) Fluorescence quenching of indole and model micelle systems. J Phys Chem 80:486–493

    Article  CAS  Google Scholar 

  37. Roberts LM, Dunker AK (1993) Structural changes accompanying chloroform-induced contraction of the filamentous phage fd. Biochemistry 32:10479–10488

    Article  PubMed  CAS  Google Scholar 

  38. Turoverov KK, Kuznetsova IM, Maskevich AA, Stepuro VI, Kuzmitsky VA, Uversky VN (2007) Tht as an instrument for testing and investigation of amyloid and amyloid-like fibrils. Proc SPIE 6733:1–7

    Google Scholar 

  39. Sulatskaya AI, Kuznetsova IM, Turoverov KK (2011) Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye. J Phys Chem B 115:11519–11524

    Article  PubMed  CAS  Google Scholar 

  40. Sulatskaya AI, Kuznetsova IM, Turoverov KK (2012) Interaction of thioflavin T with amyloid fibrils: fluorescence quantum yield of bound dye. J Phys Chem B 116(8):2538–2544

    Article  PubMed  CAS  Google Scholar 

  41. Kuznetsova IM, Sulatskaya AI, Uversky VN and Turoverov KK (2012) Analyzing Thioflavin T binding to amyloid fibrils by an equilibrium microdialysis-based technique. Plos One 7(2):e30724

    Article  PubMed  CAS  Google Scholar 

  42. Turoverov KK, Biktashev AG, Dorofeiuk AV, Kuznetsova IM(1998) A complex of apparatus and programs for the measurement of spectral, polarization and kinetic characteristics of fluorescence in solution. Tsitologiia 40:806–817

    Google Scholar 

  43. Kurganov BI (2000) Analysis of negative cooperativity for glutamate dehydrogenase. Biophys Chem 87:185–199

    Article  PubMed  CAS  Google Scholar 

  44. Dzwolak W, Pecul M (2005) Chiral bias of amyloid fibrils revealed by the twisted confor-mation of thioflavin T: an induced circular dichroism/DFT study. FEBS Lett 579:6601–6603

    Google Scholar 

Download references

Acknowledgement

The work was partially supported by Program Molecular and Cellular Biology of the Russian Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Uversky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sulatskaya, A.I., Povarova, O.I., Kuznetsova, I.M., Uversky, V.N., Turoverov, K.K. (2012). Binding Stoichiometry and Affinity of Fluorescent Dyes to Proteins in Different Structural States. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics