Skip to main content

Accessing, Using, and Creating Chemical Property Databases for Computational Toxicology Modeling

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 929))

Abstract

Toxicity data is expensive to generate, is increasingly seen as precompetitive, and is frequently used for the generation of computational models in a discipline known as computational toxicology. Repositories of chemical property data are valuable for supporting computational toxicologists by providing access to data regarding potential toxicity issues with compounds as well as for the purpose of building structure–toxicity relationships and associated prediction models. These relationships use mathematical, statistical, and modeling computational approaches and can be used to understand the mechanisms by which chemicals cause harm and, ultimately, enable prediction of adverse effects of these chemicals to human health and/or the environment. Such approaches are of value as they offer an opportunity to prioritize chemicals for testing. An increasing amount of data used by computational toxicologists is being published into the public domain and, in parallel, there is a greater availability of Open Source software for the generation of computational models. This chapter provides an overview of the types of data and software available and how these may be used to produce predictive toxicology models for the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helma C (ed) (2005) Predictive toxicology. Taylor and Francis, Boca Raton

    Google Scholar 

  2. Cronin MTD, Livingstone DJ (2004) Predicting chemical toxicity and fate. CRC, Boca Raton

    Book  Google Scholar 

  3. Ekins S (2007) Computational toxicology: risk assessment for pharmaceutical and environmental chemicals. Wiley, Hoboken

    Google Scholar 

  4. Ekins S, Boulanger B, Swaan PW, Hupcey MAZ (2002) Towards a new age of virtual ADME/TOX and multidimensional drug discovery. J Comput Aided Mol Des 16:381–401

    Article  PubMed  CAS  Google Scholar 

  5. Voutchkova AM, Osimitz TG, Anastas PT (2010) Toward a comprehensive molecular design framework for reduced hazard. Chem Rev 110:5845–5882

    Article  PubMed  CAS  Google Scholar 

  6. Ekins S, Giroux C (2006) Computers and systems biology for pharmaceutical research and development. In: Ekins S (ed) Computer applications in pharmaceutical research and development. John Wiley, Hoboken, pp 139–165

    Chapter  Google Scholar 

  7. Ekins S, Bugrim A, Brovold L, Kirillov E, Nikolsky Y, Rakhmatulin EA, Sorokina S, Ryabov A, Serebryiskaya T, Melnikov A, Metz J, Nikolskaya T (2006) Algorithms for network analysis in systems-ADME/Tox using the MetaCore and MetaDrug platforms. Xenobiotica 36(10–11):877–901

    Article  PubMed  CAS  Google Scholar 

  8. Ekins S (2006) Systems-ADME/Tox: resources and network approaches. J Pharmacol Toxicol Methods 53:38–66

    Article  PubMed  CAS  Google Scholar 

  9. Nikolsky Y, Ekins S, Nikolskaya T, Bugrim A (2005) A novel method for generation of signature networks as biomarkers from complex high throughput data. Toxicol Lett 158:20–29

    Article  PubMed  CAS  Google Scholar 

  10. Ekins S, Nikolsky Y, Nikolskaya T (2005) Techniques: application of systems biology to absorption, distribution, metabolism, excretion, and toxicity. Trends Pharmacol Sci 26:202–209

    Article  PubMed  CAS  Google Scholar 

  11. Ekins S, Williams AJ, Xu JJ (2010) A predictive ligand-based Bayesian model for human drug induced liver injury. Drug Metab Dispos 38:2302–2308

    Article  PubMed  CAS  Google Scholar 

  12. Zientek M, Stoner C, Ayscue R, Klug-McLeod J, Jiang Y, West M, Collins C, Ekins S (2010) Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition. Chem Res Toxicol 23:664–676

    Article  PubMed  CAS  Google Scholar 

  13. Langdon SR, Mulgrew J, Paolini GV, van Hoorn WP (2010) Predicting cytotoxicity from heterogeneous data sources with Bayesian learning. J Cheminform 2:11

    Article  PubMed  CAS  Google Scholar 

  14. Clark RD, Wolohan PR, Hodgkin EE, Kelly JH, Sussman NL (2004) Modelling in vitro hepatotoxicity using molecular interaction fields and SIMCA. J Mol Graph Model 22:487–497

    Article  PubMed  CAS  Google Scholar 

  15. Cheng A, Dixon SL (2003) In silico models for the prediction of dose-dependent human hepatotoxicity. J Comput Aided Mol Des 17:811–823

    Article  PubMed  CAS  Google Scholar 

  16. Ung CY, Li H, Yap CW, Chen YZ (2007) In silico prediction of pregnane X receptor activators by machine learning approaches. Mol Pharmacol 71:158–168

    Article  PubMed  CAS  Google Scholar 

  17. Marechal JD, Yu J, Brown S, Kapelioukh I, Rankin EM, Wolf CR, Roberts GC, Paine MJ, Sutcliffe MJ (2006) In silico and in vitro screening for inhibition of cytochrome P450 CYP3A4 by co-medications commonly used by patients with cancer. Drug Metab Dispos 34:534–538

    Article  PubMed  CAS  Google Scholar 

  18. Ekins S, Waller CL, Swaan PW, Cruciani G, Wrighton SA, Wikel JH (2000) Progress in predicting human ADME parameters in silico. J Pharmacol Toxicol Methods 44:251–272

    Article  PubMed  CAS  Google Scholar 

  19. Boelsterli UA, Ho HK, Zhou S, Leow KY (2006) Bioactivation and hepatotoxicity of nitroaromatic drugs. Curr Drug Metab 7:715–727

    Article  PubMed  CAS  Google Scholar 

  20. Kassahun K, Pearson PG, Tang W, McIntosh I, Leung K, Elmore C, Dean D, Wang R, Doss G, Baillie TA (2001) Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem Res Toxicol 14:62–70

    Article  PubMed  CAS  Google Scholar 

  21. Walgren JL, Mitchell MD, Thompson DC (2005) Role of metabolism in drug-induced idiosyncratic hepatotoxicity. Crit Rev Toxicol 35:325–361

    Article  PubMed  CAS  Google Scholar 

  22. Park BK, Kitteringham NR, Maggs JL, Pirmohamed M, Williams DP (2005) The role of metabolic activation in drug-induced hepatotoxicity. Annu Rev Pharmacol Toxicol 45:177–202

    Article  PubMed  CAS  Google Scholar 

  23. Schuster D, Laggner C, Langer T (2005) Why drugs fail—a study on side effects in new chemical entities. Curr Pharm Des 11:3545–3559

    Article  PubMed  CAS  Google Scholar 

  24. Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105:97–105

    Article  PubMed  CAS  Google Scholar 

  25. Xia XY, Maliski EG, Gallant P, Rogers D (2004) Classification of kinase inhibitors using a Bayesian model. J Med Chem 47:4463–4470

    Article  PubMed  CAS  Google Scholar 

  26. Bender A (2005) Studies on molecular similarity. Ph.D. Thesis, University of Cambridge, Cambridge

    Google Scholar 

  27. Williams AJ, Ekins S (2012) A quality alert for chemistry databases. Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation, Drug Discovery Today, Volume 17, Issues 13–14, Pages 685–701. Submitted for publication

    Google Scholar 

  28. Judson R (2010) Public databases supporting computational toxicology. J Toxicol Environ Health 13:218–231

    CAS  Google Scholar 

  29. Williams AJ, Tkachenko V, Lipinski C, Tropsha A, Ekins S (2009) Free online resources enabling crowd-sourced drug discovery. Drug Discov World 10(Winter):33–38

    CAS  Google Scholar 

  30. Richard AM, Williams CR (2002) Distributed structure-searchable toxicity (DSSTox) public database network: a proposal. Mutat Res 499:27–52

    Article  PubMed  CAS  Google Scholar 

  31. Judson R, Richard A, Dix D, Houck K, Elloumi F, Martin M, Cathey T, Transue TR, Spencer R, Wolf M (2008) ACToR—aggregated computational toxicology resource. Toxicol Appl Pharmacol 233:7–13

    Article  PubMed  CAS  Google Scholar 

  32. Overington J (2009) ChEMBL An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL-EBI). Interview by Wendy A. Warr. J Comput Aided Mol Des 23:195–198

    Article  PubMed  Google Scholar 

  33. Richard AM (2006) DSSTox web site launch: Improving public access to databases for building structure-toxicity prediction models. Preclinica 2:103–108

    Google Scholar 

  34. Kortagere S, Krasowski MD, Reschly EJ, Venkatesh M, Mani S, Ekins S (2010) Evaluation of computational docking to identify pregnane × receptor agonists in the ToxCast™ database. Environ Health Perspect 118:1412–1417

    Article  PubMed  CAS  Google Scholar 

  35. Sanderson K (2011) It’s not easy being green. Nature 469:18–20

    Article  PubMed  CAS  Google Scholar 

  36. Carroll JJ, Klyne G (2004) Resource description framework (RDF): concepts and abstract syntax. Tech rep, W3C

    Google Scholar 

  37. Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF, W3C recommendation

    Google Scholar 

  38. Willighagen EL, Alvarsson J, Andersson A, Eklund M, Lampa S, Lapins M, Spjuth O, Wikberg J (2011) Linking the resource description framework to cheminformatics and proteochemometrics. J Biomedical Semantics 2(Suppl 1):S1–S6

    Article  Google Scholar 

  39. Chen B, Dong X, Jiao D, Wang H, Zhu Q, Ding Y, Wild DJ (2010) Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinformatics 11:255

    Article  PubMed  Google Scholar 

  40. Ansell P (2011) Model and prototype for querying multiple linked scientific datasets. Future Generat Comput Syst 27:329–333

    Article  Google Scholar 

  41. Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J (2008) Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J Biomed Inform 41:706–716

    Article  PubMed  Google Scholar 

  42. Prud’hommeaux E (2007) Case study: FeDeRate for drug research. Tech Rep: 4–7

    Google Scholar 

  43. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633

    Article  PubMed  CAS  Google Scholar 

  44. Crumb WJ Jr, Ekins S, Sarazan D, Wikel JH, Wrighton SA, Carlson C, Beasley CM (2006) Effects of antipsychotic drugs on Ito, INa, Isus, IK1, and hERG: QT prolongation, structure activity relationship, and network analysis. Pharm Res 23:1133–1143

    Article  PubMed  CAS  Google Scholar 

  45. Su BH, Shen MY, Esposito EX, Hopfinger AJ, Tseng YJ (2010) In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. J Chem Inf Model 50:1304–1318

    Article  PubMed  CAS  Google Scholar 

  46. Li Q, Jorgensen FS, Oprea T, Brunak S, Taboureau O (2008) hERG classification model based on a combination of support vector machine method and GRIND descriptors. Mol Pharm 5:117–127

    Article  PubMed  CAS  Google Scholar 

  47. Thai KM, Ecker GF (2009) Similarity-based SIBAR descriptors for classification of chemically diverse hERG blockers. Mol Divers 13:321–336

    Article  PubMed  CAS  Google Scholar 

  48. Ekins S, Williams AJ, Krasowski MD, Freundlich JS (2011) In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today 16(7–8):298–310

    Article  PubMed  Google Scholar 

  49. Strachan RT, Ferrara G, Roth BL (2006) Screening the receptorome: an efficient approach for drug discovery and target validation. Drug Discov Today 11:708–716

    Article  PubMed  CAS  Google Scholar 

  50. O’Connor KA, Roth BL (2005) Finding new tricks for old drugs: an efficient route for public-sector drug discovery. Nat Rev Drug Discov 4:1005–1014

    Article  PubMed  Google Scholar 

  51. Roth BL, Lopez E, Beischel S, Westkaemper RB, Evans JM (2004) Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for CNS drug discovery. Pharmacol Ther 102:99–110

    Article  PubMed  CAS  Google Scholar 

  52. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KL, Edwards DD, Shoichet BK, Roth BL (2009) Predicting new molecular targets for known drugs. Nature 462:175–181

    Article  PubMed  CAS  Google Scholar 

  53. Setola V, Dukat M, Glennon RA, Roth BL (2005) Molecular determinants for the interaction of the valvulopathic anorexigen norfenfluramine with the 5-HT2B receptor. Mol Pharmacol 68:20–33

    PubMed  CAS  Google Scholar 

  54. Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ, Roth BL (2000) Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102:2836–2841

    Article  PubMed  CAS  Google Scholar 

  55. Chekmarev DS, Kholodovych V, Balakin KV, Ivanenkov Y, Ekins S, Welsh WJ (2008) Shape signatures: new descriptors for predicting cardiotoxicity in silico. Chem Res Toxicol 21:1304–1314

    Article  PubMed  CAS  Google Scholar 

  56. Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Oberg T, Dao P, Cherkasov A, Tetko IV (2008) Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48:766–784

    Article  PubMed  CAS  Google Scholar 

  57. Ekins S, Williams AJ (2010) Precompetitive preclinical ADME/Tox data: set It free on the web to facilitate computational model building to assist drug development. Lab Chip 10:13–22

    Article  PubMed  CAS  Google Scholar 

  58. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906

    Article  PubMed  CAS  Google Scholar 

  59. Hardy B, Douglas N, Helma C, Rautenberg M, Jeliazkova N, Jeliazkov V, Nikolova I, Benigni R, Tcheremenskaia O, Kramer S, Girschick T, Buchwald F, Wicker J, Karwath A, Gutlein M, Maunz A, Sarimveis H, Melagraki G, Afantitis A, Sopasakis P, Gallagher D, Poroikov V, Filimonov D, Zakharov A, Lagunin A, Gloriozova T, Novikov S, Skvortsova N, Druzhilovsky D, Chawla S, Ghosh I, Ray S, Patel H, Escher S (2010) Collaborative development of predictive toxicology applications. J Cheminform 2:7

    Article  PubMed  Google Scholar 

  60. Spjuth O, Alvarsson J, Berg A, Eklund M, Kuhn S, Masak C, Torrance G, Wagener J, Willighagen EL, Steinbeck C, Wikberg JE (2009) Bioclipse 2: a scriptable integration platform for the life sciences. BMC Bioinformatics 10:397

    Article  PubMed  Google Scholar 

  61. Afzelius L, Arnby CH, Broo A, Carlsson L, Isaksson C, Jurva U, Kjellander B, Kolmodin K, Nilsson K, Raubacher F, Weidolf L (2007) State-of-the-art tools for computational site of metabolism predictions: comparative analysis, mechanistic insights, and future applications. Drug Metab Rev 39:61–86

    Article  PubMed  CAS  Google Scholar 

  62. Jolivette LJ, Ekins S (2007) Methods for predicting human drug metabolism. Adv Clin Chem 43:131–176

    Article  PubMed  CAS  Google Scholar 

  63. Crivori P, Poggesi I (2006) Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs. Eur J Med Chem 41:795–808

    Article  PubMed  CAS  Google Scholar 

  64. Stjernschantz E, Vermeulen NP, Oostenbrink C (2008) Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450. Expert Opin Drug Metab Toxicol 4:513–527

    Article  PubMed  CAS  Google Scholar 

  65. Boyer S, Arnby CH, Carlsson L, Smith J, Stein V, Glen RC (2007) Reaction site mapping of xenobiotic biotransformations. J Chem Inf Model 47:583–590

    Article  PubMed  CAS  Google Scholar 

  66. Carlsson L, Spjuth O, Adams S, Glen RC, Boyer S (2010) Use of historic metabolic biotransformation data as a means of anticipating metabolic sites using MetaPrint2D and Bioclipse. BMC Bioinformatics 11:362

    Article  PubMed  Google Scholar 

  67. Rydberg P, Gloriam DE, Olsen L (2010) The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics 26:2988–2989

    Article  PubMed  CAS  Google Scholar 

  68. Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R (2005) MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 48:6970–6979

    Article  PubMed  CAS  Google Scholar 

  69. Spjuth O, Willighagen EL, Guha R, Eklund M, Wikberg JE (2010) Towards interoperable and reproducible QSAR analyses: exchange of datasets. J Cheminform 2:5

    Article  PubMed  Google Scholar 

  70. Floris F, Willighagen EL, Guha R, Rojas M, Hoppe C (2010) The blue obelisk descriptor ontology. Technical report

    Google Scholar 

  71. Wagener J, Spjuth O, Willighagen EL, Wikberg JE (2009) XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services. BMC Bioinformatics 10:279

    Article  PubMed  Google Scholar 

  72. Gupta RR, Gifford EM, Liston T, Waller CL, Bunin B, Ekins S (2010) Using open source computational tools for predicting human metabolic stability and additional ADME/TOX properties. Drug Metab Dispos 38:2083–2090

    Article  PubMed  CAS  Google Scholar 

  73. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006) Recent developments of the chemistry development kit (CDK)—an open-source java library for chemo- and bioinformatics. Curr Pharm Des 12:2111–2120

    Article  PubMed  CAS  Google Scholar 

  74. Brazma A (2001) On the importance of standardisation in life sciences. Bioinformatics 17:113–114

    Article  PubMed  CAS  Google Scholar 

  75. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SE gratefully acknowledges the many collaborators involved in the cited work. Contributions by OS and ELW were supported by Uppsala University (KoF 07).

SE consults for Collaborative Drug Discovery, Inc. on a Bill and Melinda Gates Foundation Grant#49852 “Collaborative drug discovery for TB through a novel database of SAR data optimized to promote data archiving and sharing.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony J. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Williams, A.J., Ekins, S., Spjuth, O., Willighagen, E.L. (2012). Accessing, Using, and Creating Chemical Property Databases for Computational Toxicology Modeling. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 929. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-050-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-050-2_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-049-6

  • Online ISBN: 978-1-62703-050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics