Skip to main content

Molecular Dynamics

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 929))

Abstract

Molecular dynamics (MD) simulation holds the promise of revealing the mechanisms of biological processes in their ultimate detail. It is carried out by computing the interaction forces acting on each atom and then propagating the velocities and positions of the atoms by numerical integration of Newton’s equations of motion. In this review, we present an overview of how the MD simulation can be conducted to address computational toxicity problems. The study cases will cover a standard MD simulation performed to investigate the overall flexibility of a cytochrome P450 (CYP) enzyme and a set of more advanced MD simulations to examine the barrier to ion conduction in a human α7 nicotinic acetylcholine receptor (nAChR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liebler DC, Guengerich FP (2005) Elucidating mechanisms of drug-induced toxicity. Nat Rev Drug Discov 4(5):410–420

    Article  PubMed  CAS  Google Scholar 

  2. Houck KA, Kavlock RJ (2008) Understanding mechanisms of toxicity: insights from drug discovery research. Toxicol Appl Pharmacol 227(2):163–178

    Article  PubMed  CAS  Google Scholar 

  3. Gillette JR, Mitchell JR, Brodie BB (1974) Biochemical mechanisms of drug toxicity. Annu Rev Pharmacol 14:271–288

    Article  CAS  Google Scholar 

  4. Baillie TA (2008) Metabolism and toxicity of drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol 21(1):129–137

    Article  PubMed  Google Scholar 

  5. Guengerich FP (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 39:1–17

    Article  PubMed  CAS  Google Scholar 

  6. Gronemeyer H, Gustafsson J, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3:950–964

    Article  PubMed  CAS  Google Scholar 

  7. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440(7083):463–469

    Article  PubMed  CAS  Google Scholar 

  8. Cronin MT (2000) Computational methods for the prediction of drug toxicity. Curr Opin Drug Discov Dev 3(3):292–297

    CAS  Google Scholar 

  9. Dearden JC (2003) In silico prediction of drug toxicity. J Comput Aided Mol Des 17(2–4):119–127

    Article  PubMed  CAS  Google Scholar 

  10. Valerio LG (2009) In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol 241(3):356–370

    Article  PubMed  CAS  Google Scholar 

  11. Kavlock RJ et al (2008) Computational toxicology—a state of the science mini review. Toxicol Sci 103(1):14–27

    Article  PubMed  CAS  Google Scholar 

  12. Nicholson JD, Wilson ID (2003) Understanding ‘Global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676

    Article  PubMed  CAS  Google Scholar 

  13. Bugrim A, Nikolskaya T, Yuri Nikolsky Y (2004) Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Discov Today 9(3):127–135

    Article  PubMed  CAS  Google Scholar 

  14. Nicholson JK et al (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161

    Article  PubMed  CAS  Google Scholar 

  15. Hunter PJ, Borg TK (2003) Integration from proteins to organs: the Physiome Project. Nat Rev Mol Cell Biol 4(3):237–243

    Article  PubMed  CAS  Google Scholar 

  16. Silva JR et al (2009) A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proc Natl Acad Sci U S A 106(27):11102–11106

    Article  PubMed  CAS  Google Scholar 

  17. Dill KA et al (2008) The protein folding problem. Annu Rev Biophys 37:289–316

    Article  PubMed  CAS  Google Scholar 

  18. Zimmermann O, Hansmann UH (2008) Understanding protein folding: small proteins in silico. Biochim Biophys Acta 1784(1):252–258

    Article  PubMed  CAS  Google Scholar 

  19. de Groot BL, Grubmüller H (2005) The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15(2):176–183

    Article  PubMed  CAS  Google Scholar 

  20. Roux B, Schulten K (2004) Computational studies of membrane channels. Structure 12(8):1343–1351

    Article  PubMed  CAS  Google Scholar 

  21. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590

    Article  PubMed  CAS  Google Scholar 

  22. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652

    Article  PubMed  CAS  Google Scholar 

  23. van Gunsteren WF et al (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed Engl 45(25):4064–4092

    Article  PubMed  CAS  Google Scholar 

  24. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106(5):1589–1615

    Article  PubMed  CAS  Google Scholar 

  25. Scheraga HA, Khalili M, Liwo A (2007) Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem 58:57–83

    Article  PubMed  CAS  Google Scholar 

  26. Warshel A (2002) Molecular dynamics simulations of biological reactions. Acc Chem Res 35(6):385–395

    Article  PubMed  CAS  Google Scholar 

  27. Garcia-Viloca M et al (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303(5655):186–195

    Article  PubMed  CAS  Google Scholar 

  28. Karplus M et al (2005) Protein structural transitions and their functional role. Philos Trans A Math Phys Eng Sci 363(1827):331–355

    Article  CAS  Google Scholar 

  29. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48(7):1198–1229

    Article  PubMed  CAS  Google Scholar 

  30. Ridder L, Mulholland AJ (2003) Modeling biotransformation reactions by combined quantum mechanical/molecular mechanical approaches: from structure to activity. Curr Top Med Chem 3(11):1241–1256

    Article  PubMed  CAS  Google Scholar 

  31. Lewis DFV (2001) Guide to cytochromes P450: structure and function, 2nd edn. Informa Healthcare, London

    Book  Google Scholar 

  32. Denisov IG et al (2005) Structure and chemistry of cytochrome P450. Chem Rev 105(6):2253–2277

    Article  PubMed  CAS  Google Scholar 

  33. Wang JF, Chou KC (2010) Molecular modeling of cytochrome P450 and drug metabolism. Curr Drug Metab 11(4):342–346

    Article  PubMed  CAS  Google Scholar 

  34. Otyepka M et al (2007) What common structural features and variations of mammalian P450s are known to date? Biochim Biophys Acta 1770(3):376–389

    Article  PubMed  CAS  Google Scholar 

  35. Henley DV, Korach KS (2006) Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 147(6):S25–S32

    Article  PubMed  CAS  Google Scholar 

  36. Ankley GT et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741

    Article  PubMed  CAS  Google Scholar 

  37. Jugan ML, Levi Y, Blondeau JP (2010) Endocrine disruptors and thyroid hormone physiology. Biochem Pharmacol 79(7):939–947

    Article  PubMed  CAS  Google Scholar 

  38. Pearce EN, Braverman LE (2009) Environmental pollutants and the thyroid. Best Pract Res Clin Endocrinol Metab 23(6):801–813

    Article  PubMed  CAS  Google Scholar 

  39. Prenzel N et al (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8(1):11–31

    Article  PubMed  CAS  Google Scholar 

  40. Bock KW (1994) Aryl hydrocarbon or dioxin receptor: biologic and toxic responses. Rev Physiol Biochem Pharmacol 125:1–42

    Article  PubMed  CAS  Google Scholar 

  41. Bradshaw TD, Bell DR (2009) Relevance of the aryl hydrocarbon receptor (AhR) for clinical toxicology. Clin Toxicol (Phila) 47(7):632–642

    Article  CAS  Google Scholar 

  42. Gray LE Jr et al (2006) Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals. Int J Androl 29(1):96–104

    Article  PubMed  CAS  Google Scholar 

  43. Roncaglioni A, Benfenati E (2008) In silico-aided prediction of biological properties of chemicals: oestrogen receptor-mediated effects. Chem Soc Rev 37(3):441–450

    Article  PubMed  CAS  Google Scholar 

  44. Lin JH et al (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124(20):5632–5633

    Article  PubMed  CAS  Google Scholar 

  45. Cornell W, Nam K (2009) Steroid hormone binding receptors: application of homology modeling, induced fit docking, and molecular dynamics to study structure–function relationships. Curr Top Med Chem 9(9):844–853

    Article  PubMed  CAS  Google Scholar 

  46. Recanatini M, Cavalli A, Masetti M (2008) Modeling the hERG potassium channel in a phospholipid bilayer: molecular dynamics and drug docking studies. J Comput Chem 29(5):795–808

    Article  PubMed  CAS  Google Scholar 

  47. Stary A et al (2010) Toward a consensus model of the HERG potassium channel. ChemMedChem 5(3):455–467

    Article  PubMed  CAS  Google Scholar 

  48. Meharenna YT, Poulos TL (2010) Using molecular dynamics to probe the structural basis for enhanced stability in thermal stable cytochromes P450. Biochemistry 49(31):6680–6686

    Article  PubMed  CAS  Google Scholar 

  49. Skopalík J, Anzenbacher P, Otyepka M (2008) Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2 C9, and 2A6, which correlate with their substrate preferences. J Phys Chem B 112(27):8165–8173

    Article  PubMed  CAS  Google Scholar 

  50. Hendrychováa T et al (2010) Flexibility of human cytochrome p450 enzymes: molecular dynamics and spectroscopy reveal important function-related variations. Biochim Biophys Acta 1814:58–68

    Google Scholar 

  51. Lampe JN et al (2010) Two-dimensional NMR and all-atom molecular dynamics of cytochrome P450 CYP119 reveal hidden conformational substates. J Biol Chem 285(13):9594–9603

    Article  PubMed  CAS  Google Scholar 

  52. Park H, Lee S, Suh J (2005) Structural and dynamical basis of broad substrate specificity, catalytic mechanism, and inhibition of cytochrome P450 3A4. J Am Chem Soc 127(39):13634–13642

    Article  PubMed  CAS  Google Scholar 

  53. Fishelovitch D et al (2007) Structural dynamics of the cooperative binding of organic molecules in the human cytochrome P450 3A4. J Am Chem Soc 129(6):1602–1611

    Article  PubMed  CAS  Google Scholar 

  54. Seifert A et al (2006) Multiple molecular dynamics simulations of human p450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin. Proteins 64(1):147–155

    Article  PubMed  CAS  Google Scholar 

  55. Winn PJ et al (2002) Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine. Proc Natl Acad Sci U S A 99(8):5361–5366

    Article  PubMed  CAS  Google Scholar 

  56. Lüdemann SK, Lounnas V, Wade RC (2000) How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 303(5):797–811

    Article  PubMed  CAS  Google Scholar 

  57. Li W et al (2007) Possible pathway(s) of metyrapone egress from the active site of cytochrome P450 3A4: a molecular dynamics simulation. Drug Metab Dispos 35(4):689–696

    Article  PubMed  CAS  Google Scholar 

  58. Fishelovitch D et al (2009) Theoretical characterization of substrate access/exit channels in the human cytochrome P450 3A4 enzyme: involvement of phenylalanine residues in the gating mechanism. J Phys Chem B 113(39):13018–13025

    Article  PubMed  CAS  Google Scholar 

  59. Subbotina J et al (2010) Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations. Proteins 78(14):2922–2934

    Article  PubMed  CAS  Google Scholar 

  60. Stansfeld PJ et al (2008) Insight into the mechanism of inactivation and pH sensitivity in potassium channels from molecular dynamics simulations. Biochemistry 47(28):7414–7422

    Article  PubMed  CAS  Google Scholar 

  61. Kutteh R, Vandenberg JI, Kuyucak S (2007) Molecular dynamics and continuum electrostatics studies of inactivation in the HERG potassium channel. J Phys Chem B 111:1090–1098

    Article  PubMed  CAS  Google Scholar 

  62. Osterberg F, Aqvist J (2005) Exploring blocker binding to a homology model of the open hERG K+ channel using docking and molecular dynamics methods. FEBS Lett 579:2939–2944

    Article  PubMed  CAS  Google Scholar 

  63. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  PubMed  CAS  Google Scholar 

  64. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  PubMed  CAS  Google Scholar 

  65. Christen M et al (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 26(16):1719–1751

    Article  PubMed  CAS  Google Scholar 

  66. Van Der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  CAS  Google Scholar 

  67. Ponder JW, Richards FM (1987) An efficient Newton-like method for molecular mechanics energy minimization of large molecules. J Comput Chem 8(7):1016–1024

    Article  CAS  Google Scholar 

  68. Refson K (2000) Moldy: a portable molecular dynamics simulation program for serial and parallel computers. Comput Phys Commun 126(3):310–329

    Article  CAS  Google Scholar 

  69. Smith W, Forester TR (1996) DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graph 14(3):136–141

    Article  PubMed  CAS  Google Scholar 

  70. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  Google Scholar 

  71. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19

    Article  CAS  Google Scholar 

  72. Bowers KJ et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE conference on supercomputing (SC06). Tampa, FL.

    Google Scholar 

  73. MacKerell AD et al (1998) CHARMM: the energy function and its parameterization with an overview of the program. In: Schleyer PVR (ed) The encyclopedia of computational chemistry. Wiley, Chichester, pp 271–277

    Google Scholar 

  74. Cornell WD et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  75. Oostenbrink C et al (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

    Article  PubMed  CAS  Google Scholar 

  76. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  77. Stone JE et al (2007) Accelerating molecular modeling applications with graphics processors. J Comput Chem 28(16):2618–2640

    Article  PubMed  CAS  Google Scholar 

  78. Friedrichs MS et al (2009) Accelerating molecular dynamic simulation on graphics processing units. J Comput Chem 30(6):864–872

    Article  PubMed  CAS  Google Scholar 

  79. Davis JE et al (2009) Towards large-scale molecular dynamics simulations on graphics processors. Lecture Notes Comput Sci 5462:176–186

    Article  CAS  Google Scholar 

  80. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  81. Hockney RW, Eastwood JW (1988) Computer simulation using particles. Taylor & Francis Croup, New York

    Book  Google Scholar 

  82. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38

    CAS  Google Scholar 

  83. Sali A et al (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23(3):318–326

    Article  PubMed  CAS  Google Scholar 

  84. Wang J et al (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  PubMed  CAS  Google Scholar 

  85. Vanommeslaeghe K et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    PubMed  CAS  Google Scholar 

  86. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23:327–341

    Article  CAS  Google Scholar 

  87. Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001

    Article  CAS  Google Scholar 

  88. Andersen HC (1980) Molecular dynamics at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  89. Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81(1):511–519

    Article  CAS  Google Scholar 

  90. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  PubMed  Google Scholar 

  91. Martyna GL, Klein ML, Tuckerman M (1992) Nose-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643

    Article  Google Scholar 

  92. Berendsen HJC et al (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  93. Martyna GL, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189

    Article  CAS  Google Scholar 

  94. Andricioaei I, Karplus M (2001) On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys 115:6289–6292

    Article  CAS  Google Scholar 

  95. Baron R, Hünenberger PH, McCammon JA (2009) Absolute single-molecule entropies from quasi-harmonic analysis of microsecond molecular dynamics: correction terms and convergence properties. J Chem Theory Comput 5(12):3150–3160

    Article  PubMed  CAS  Google Scholar 

  96. Kollman PA et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  PubMed  CAS  Google Scholar 

  97. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation—umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  98. Mitsutake A, Sugita Y, Okamoto Y (2001) Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers 60(2):96–123

    Article  PubMed  CAS  Google Scholar 

  99. Wang F, Landau DP (2001) Efficient multiple range random walk algorithm to calculate density of states. Phys Rev Lett 86:2050

    Article  PubMed  CAS  Google Scholar 

  100. Kumar S et al (1993) The weighted histogram analysis method (WHAM) for free energy calculations on biomolecules: 1. The method. J Comput Chem 13:1011–1021

    Article  Google Scholar 

  101. Fasnacht M, Zhu J, Honig B (2007) Local quality assessment in homology models using statistical potentials and support vector machines. Protein Sci 16(8):1557–1568

    Article  PubMed  CAS  Google Scholar 

  102. Grossfield A, Feller SE, Pitman MC (2007) Convergence of molecular dynamics simulations of membrane proteins. Proteins 67(1):31–40

    Article  PubMed  CAS  Google Scholar 

  103. Guvench O, MacKerell AD Jr (2008) Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol 443:63–88

    Article  PubMed  CAS  Google Scholar 

  104. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Article  PubMed  CAS  Google Scholar 

  105. Hornak V et al (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

    Article  PubMed  CAS  Google Scholar 

  106. MacKerell AD Jr, Feig M, Brooks CL III (2004) Improved treatment of the protein backbone in empirical force fields. J Am Chem Soc 126(3):698–699

    Article  PubMed  CAS  Google Scholar 

  107. Patel S, Mackerell AD Jr, Brooks CL III (2004) CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem 25(12):1504–1514

    Article  PubMed  CAS  Google Scholar 

  108. Ponder JW et al (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114(8):2549–2564

    Article  PubMed  CAS  Google Scholar 

  109. Kaminski GA, Friesner RA, Zhou R (2003) A computationally inexpensive modification of the point dipole electrostatic polarization model for molecular simulations. J Comput Chem 24(3):267–276

    Article  PubMed  CAS  Google Scholar 

  110. Lopes PE, Roux B, Mackerell AD (2009) Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications. Theor Chem Acc 124(1–2):11–28

    Article  PubMed  CAS  Google Scholar 

  111. Shan Y et al (2009) A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proc Natl Acad Sci U S A 106(1):139–144

    Article  PubMed  CAS  Google Scholar 

  112. Arkin IT et al (2007) Mechanism of Na+/H+ antiporting. Science 317(5839):799–803

    Article  PubMed  CAS  Google Scholar 

  113. Jensen MØ et al (2010) Principles of conduction and hydrophobic gating in K+ channels. Proc Natl Acad Sci U S A 107(13):5833–5838

    Article  PubMed  CAS  Google Scholar 

  114. Okamoto Y (2004) Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J Mol Graph Model 22(5):425–439

    Article  PubMed  CAS  Google Scholar 

  115. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99(20):12562–12566

    Article  PubMed  CAS  Google Scholar 

  116. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929

    Article  PubMed  CAS  Google Scholar 

  117. Bolhuis PG et al (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318

    Article  PubMed  CAS  Google Scholar 

  118. Noé F et al (2007) Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J Chem Phys 126(15):155102

    Article  PubMed  CAS  Google Scholar 

  119. Williams PA et al (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305(5684):683–686

    Article  PubMed  CAS  Google Scholar 

  120. Sine SM, Engel AG (2006) Recent advances in Cys-loop receptor structure and function. Nature 440(7083):448–455

    Article  PubMed  CAS  Google Scholar 

  121. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346(4):967–989

    Article  PubMed  CAS  Google Scholar 

  122. Laskowski RA et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  123. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Protein 17:355–362

    Article  CAS  Google Scholar 

  124. Cheng X et al (2006) Channel opening motion of alpha7 nicotinic acetylcholine receptor as suggested by normal mode analysis. J Mol Biol 355(2):310–324

    Article  PubMed  CAS  Google Scholar 

  125. Chipot C, Henin J (2005) Exploring the free-energy landscape of a short peptide using an average force. J Chem Phys 123(24):244906

    Article  PubMed  CAS  Google Scholar 

  126. Ivanov IN et al (2007) Barriers to ion translocation in cationic and anionic receptors from the cys-loop family. J Am Chem Soc 129(26):8217–24

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cheng, X., Ivanov, I. (2012). Molecular Dynamics. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 929. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-050-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-050-2_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-049-6

  • Online ISBN: 978-1-62703-050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics