Skip to main content

Diabetes in Mice with Monogenic Obesity: The db/db Mouse and Its Use in the Study of Cardiac Consequences

  • Protocol
  • First Online:
Animal Models in Diabetes Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 933))

Abstract

The leptin receptor deficient db/db mouse has served as a rodent model for obesity and type 2 diabetes for more than 40 years. Diabetic features in db/db mice follow an age-dependent progression, with early insulin resistance followed by an insulin secretory defect resulting in profound hyperglycemia. Diabetic db/db mice have been utilized to assess the cardiac consequences of diabetes, specifically evidence for a distinct diabetic cardiomyopathy. The db/db model is characterized by a contractile function deficit in the heart which becomes manifest 8–10 weeks after birth. Metabolic changes include an increased reliance on fatty acids and a decreased reliance on glucose as a fuel source for oxidative metabolism within the heart. As a mouse model for type 2 diabetes, both drug treatment and transgenic manipulation have proven beneficial towards improving metabolism and contractile function. The db/db mouse model has provided a useful resource to understand and treat the type 2 diabetic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hummel KP, Dickie MM, Coleman DL (1966) Diabetes, a new mutation in the mouse. Science 153:1127–1128

    Article  PubMed  CAS  Google Scholar 

  2. Coleman DL (1982) Diabetes-obesity syndromes in mice. Diabetes 31:1–6

    Article  PubMed  CAS  Google Scholar 

  3. Wyse BM, Dulin WE (1970) The influence of age and dietary conditions on diabetes in the db mouse. Diabetologia 6:268–273

    Article  PubMed  CAS  Google Scholar 

  4. Coleman DL, Hummel KP (1974) Hyperinsulinemia in pre-weaning diabetes (db) mice. Diabetologia 10:607–610

    Article  PubMed  CAS  Google Scholar 

  5. Aasum E, Hafstad AD, Severson DL et al (2003) Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52:434–441

    Article  PubMed  CAS  Google Scholar 

  6. Hummel KP, Coleman DL, Lane PW (1972) The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL/KsJ and C57BL/6J strains. Biochem Genet 7:1–13

    Article  PubMed  CAS  Google Scholar 

  7. Cavaghan MK, Ehrmann DA, Polonsky KS (2000) Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J Clin Invest 106:329–333

    Article  PubMed  CAS  Google Scholar 

  8. Leibel RL, Chung WK, Chua SC Jr (1997) The molecular genetics of rodent single gene obesities. J Biol Chem 272:31937–31940

    Article  PubMed  CAS  Google Scholar 

  9. Garcia MJ, McNamara PM, Gordon T et al (1974) Morbidity and mortality in diabetics in the Framingham population: sixteen year follow-up study. Diabetes 23:105–111

    PubMed  CAS  Google Scholar 

  10. Grundy SM, Benjamin IJ, Burke GL et al (1999) Diabetes and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146

    Article  PubMed  CAS  Google Scholar 

  11. Haffner SM, Lehto S, Ronnemaa T et al (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234

    Article  PubMed  CAS  Google Scholar 

  12. Lee C, Folsom A, Pankow J et al (2004) Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. Circulation 109:855–860

    Article  PubMed  Google Scholar 

  13. Rubler S, Dlugash J, Yuceoglu YZ et al (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    Article  PubMed  CAS  Google Scholar 

  14. Regan TJ, Lyons MM, Ahmed SS et al (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:885–899

    Article  Google Scholar 

  15. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    Article  PubMed  Google Scholar 

  16. Tomlinson KC, Gardiner SM, Hebden RA et al (1992) Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 44:103–179

    PubMed  CAS  Google Scholar 

  17. Severson DL (2004) Diabetic cardiomyopathy: recent evidence from mouse models of type 1 and type 2 diabetes. Can J Physiol Pharmacol 82:813–823

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi Y, Fortre TM, Taniguchi S et al (2000) The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism 49:22–31

    Article  PubMed  CAS  Google Scholar 

  19. Nishina PM, Naggert JK, Verstuyft J et al (1994) Atherosclerosis in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow. Metabolism 43:554–558

    Article  PubMed  CAS  Google Scholar 

  20. Jones SP, Girod WG, Granger DN et al (1999) Reperfusion injury is not affected by blockade of P-selectin in the diabetic mouse heart. Am J Physiol Heart Circ Physiol 277:H763–H769

    CAS  Google Scholar 

  21. Giacomelli F, Wiener J (1979) Primary myocardial disease in the diabetic mouse. An ultrastructural study. Lab Invest 40:460–473

    PubMed  CAS  Google Scholar 

  22. Carley AN, Severson DL (2005) Review. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 1734:112–126

    Article  PubMed  CAS  Google Scholar 

  23. Semeniuk LM, Kryski AJ, Severson DL (2000) Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol 283:H976–H982

    Google Scholar 

  24. Stolen TO, Høydal MA, Kemi OJ et al (2009) Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 105:527–536

    Article  PubMed  CAS  Google Scholar 

  25. Greer JJ, Ware DP, Lefer DJ (2006) Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol 290:H146–H153

    Article  PubMed  CAS  Google Scholar 

  26. Carley AN, Semeniuk LM, Shimoni Y et al (2004) Treatment of type 2 diabetic db/db mice with a novel PPARgamma agonist improves cardiac metabolism but not contractile function. Am J Physiol Endocrinol Metab 286:E449–E455

    Article  PubMed  CAS  Google Scholar 

  27. Pereira L, Matthes J, Schuster I et al (2006) Mechanisms of (Ca2+)i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615

    Article  PubMed  CAS  Google Scholar 

  28. Daniels A, van Bilsen M, Janssen BJ et al (2010) Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodeling. Acta Physiol (Oxf) 200:11–22

    CAS  Google Scholar 

  29. Dong F, Ren J (2009) Adiponectin improves cardiomyocyte contractile function in db/db diabetic obese mice. Obesity (Silver Spring) 17:262–268

    CAS  Google Scholar 

  30. Yue P, Arai T, Terashima M et al (2007) Magnetic resonance imaging of progressive cardiomyopathic changes in the db/db mouse. Am J Physiol Heart Circ Physiol 292:H2106–H2118

    Article  PubMed  CAS  Google Scholar 

  31. Nielsen JM, Kristiansen SB, Nørregaard R et al (2009) Blockage of receptor for advanced glycation end products prevents development of cardiac dysfunction in db/db type 2 diabetic mice. Eur J Heart Fail 11:638–647

    Article  PubMed  CAS  Google Scholar 

  32. Stuckey DJ, Carr CA, Tyler DJ et al (2008) Novel MRI method to detect altered left ­ventricular ejection and filling patterns in rodent models of disease. Magn Reson Med 60:582–587

    Article  PubMed  Google Scholar 

  33. Buchanan J, Mazumder PK, Hu P et al (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146:5341–5349

    Article  PubMed  CAS  Google Scholar 

  34. Aasum E, Cooper M, Severson DL et al (2005) Effect of BM 17.0744, a PPARalpha ligand, on the metabolism of perfused hearts from control and diabetic mice. Can J Physiol Pharmacol 83:183–190

    Article  PubMed  CAS  Google Scholar 

  35. Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53:3201–3208

    Article  PubMed  CAS  Google Scholar 

  36. Belke DD, Larsen TS, Gibbs EM et al (2000) Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab 279:E1104–E1113

    PubMed  CAS  Google Scholar 

  37. Kralik PM, Ye G, Metreveli NS et al (2005) Cardiomyocyte dysfunction in models of type 1 and type 2 diabetes. Cardiovasc Toxicol 5:285–292

    Article  PubMed  Google Scholar 

  38. Trost SU, Belke DD, Bluhm WF et al (2002) Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51:1166–1171

    Article  PubMed  CAS  Google Scholar 

  39. Hafstad AD, Solevåg GH, Severson DL et al (2006) Perfused hearts from Type 2 diabetic (db/db) mice show metabolic responsiveness to insulin. Am J Physiol Heart Circ Physiol 290:H1763–H1769

    Article  PubMed  CAS  Google Scholar 

  40. Carroll R, Carley AN, Dyck JRB et al (2005) Metabolic effects of insulin on cardiomyocytes from control and diabetic db/db mouse hearts. Am J Physiol Endocrinol Metab 288:E900–E906

    Article  PubMed  CAS  Google Scholar 

  41. An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291:H1489–H1506

    Article  PubMed  CAS  Google Scholar 

  42. Taegtmeyer H, McNulty P, Young ME (2002) Adaptation and maladaptation of the heart in diabetes. Part I: general concepts. Circulation 105:1727–1733

    Article  PubMed  CAS  Google Scholar 

  43. Young ME, McNulty P, Taegtmeyer H (2002) Adaptation and maladaptation of the heart in diabetes. Part II: potential mechanisms. Circulation 105:1861–1870

    Article  PubMed  CAS  Google Scholar 

  44. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    PubMed  CAS  Google Scholar 

  45. How O-J, Aasum E, Kunnathu S et al (2005) Influence of substrate supply on cardiac efficiency, as measured by pressure-volume analysis in ex vivo mouse hearts. Am J Physiol Heart Circ Physiol 288:H2979–H2985

    Article  PubMed  CAS  Google Scholar 

  46. How O-J, Aasum E, Severson DL et al (2006) Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes 55:466–473

    Article  PubMed  CAS  Google Scholar 

  47. Boardman N, Hafstad AD, Larsen TS et al (2009) Increased O2 cost of basal metabolism and excitation-contraction coupling in hearts from type 2 diabetic mice. Am J Physiol Heart Circ Physiol 296:H1373–H1379

    Article  PubMed  CAS  Google Scholar 

  48. Hafstad AD, Khalid AM, How O-J et al (2007) Glucose and insulin improve cardiac efficiency and postischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. Am J Physiol Endocrinol Metab 292:E1288–E1294

    Article  PubMed  CAS  Google Scholar 

  49. How O-J, Larsen TS, Hafstad AD et al (2007) Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice. Arch Physiol Biochem 113:211–220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Severson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Belke, D.D., Severson, D.L. (2012). Diabetes in Mice with Monogenic Obesity: The db/db Mouse and Its Use in the Study of Cardiac Consequences. In: Joost, HG., Al-Hasani, H., Schürmann, A. (eds) Animal Models in Diabetes Research. Methods in Molecular Biology, vol 933. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-068-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-068-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-067-0

  • Online ISBN: 978-1-62703-068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics