Skip to main content

Investigating Diseases of Dopaminergic Neurons and Melanocytes Using Zebrafish

  • Protocol
  • First Online:
TRP Channels in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1037 Accesses

Abstract

Zebrafish offer experimental advantages that have been exploited by developmental biologists and, ­increasingly, by those interested in disease mechanisms. Parkinson’s disease is characterized by the loss of dopaminergic neurons of the substantia nigra and motor symptoms such as slow movement, rigidity, and tremor. Traditionally investigators have used rodents and non-human primates as model animals to study the genetic and environmental causes of Parkinson’s diseases. However zebrafish offer an attractive alternative for behavioral studies because the larvae are small enough to fit into multi-well plates and thus are amenable to automated behavioral analysis. While there are significant anatomical differences between the zebrafish and human brains, in the zebrafish diencephalon there is a group of dopaminergic neurons whose projections are analogous to those of neurons in the human substantia nigra. Studies taking advantage of these features have measured the swimming behavior of zebrafish larvae in which expression of genes linked to familial Parkinson’s disease have been reduced, or that have been treated with pharmaceutical agents that target dopaminergic neurons. These studies have also included histological analyses of dopaminergic neurons. Zebrafish have also been used to dissect the genetic pathways that govern differentiation and survival of melanocytes. The assumption is that disruption of these pathways underlies diseases of melanocytes, which include vitiligo, a disease of melanocyte degeneration, and metastatic melanoma. It is believed that melanocytes and dopaminergic neurons must share vulnerability to particular mutations or environmental insults because risk for Parkinson’s disease and metastatic melanoma are associated with one another. Interestingly a mutagenesis screen in zebrafish may have identified one such shared requirement. In a forward screen, a mutant exhibiting melanocyte cell death was isolated and later shown to harbor a loss-of-function ­mutation in the gene encoding ion channel Transient Receptor Potential Melastatin-like 7 (TRPM7). TRPM7 was previously identified as possibly conferring risk for a Parkinsonian condition. This example reveals the potential for studies in zebrafish to reveal the genetic requirements of dopaminergic neurons, of melanocytes, and those shared by both cell types. This chapter provides the protocols used by our research group to examine the behavior of zebrafish larvae, and to monitor dopaminergic neurons and melanocytes by histology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanner CM (2003) Is the cause of Parkinson’s disease environmental or hereditary? Evidence from twin studies. Parkinsons Dis 91:133–142

    Google Scholar 

  2. Kitada T, Tong YR, Gautier CA, Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111(3):696–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Flinn L, Bretaud S, Lo C, Ingham PW, Bandmann O (2008) Zebrafish as a new animal model for movement disorders. J Neurochem 106(5):1991–1997

    Article  CAS  PubMed  Google Scholar 

  4. Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68(2):85–111

    Article  CAS  PubMed  Google Scholar 

  5. Cario CL, Farrell TC, Milanese C, Burton EA (2011) Automated measurement of zebrafish larval movement. J Physiol (Lond) 589(15):3703–3708

    Article  CAS  Google Scholar 

  6. Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, Moshnyakov M, Podlasz P (2006) Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 3(2):235–247

    Article  CAS  PubMed  Google Scholar 

  7. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327(5963):348–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rink E, Wullimann MF (2001) The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889(1–2):316–330

    Article  CAS  PubMed  Google Scholar 

  9. Bretaud S, Allen C, Ingham PW, Bandmann O (2007) p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson’s disease. J Neurochem 100(6):1626–1635

    CAS  PubMed  Google Scholar 

  10. Baulac S, Lu H, Strahle J, Yang T, Goldberg MS, Shen J, Schlossmacher MG, Lemere CA, Lu Q, Xia WM (2009) Increased DJ-1 expression under oxidative stress and in Alzheimer’s disease brains. Mol Neurodegener 4:12

    Article  PubMed Central  PubMed  Google Scholar 

  11. Sallinen V, Kolehmainen J, Priyadarshini M, Toleikyte G, Chen YC, Panula P (2010) Dopaminergic cell damage and vulnerability to MPTP in Pink1 knockdown zebrafish. Neurobiol Dis 40(1):93–101

    Article  CAS  PubMed  Google Scholar 

  12. Xi YW, Ryan J, Noble S, Yu M, Yilbas AE, Ekker M (2010) Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of pink1 function. Eur J Neurosci 31(4):623–633

    Article  PubMed  Google Scholar 

  13. Anichtchik O, Diekmann H, Fleming A, Roach A, Goldsmith P, Rubinsztein DC (2008) Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. J Neurosci 28(33):8199–8207

    Article  CAS  PubMed  Google Scholar 

  14. Sheng D, Qu D, Kwok KH, Ng SS, Lim AY, Aw SS, Lee CW, Sung WK, Tan EK, Lufkin T, Jesuthasan S, Sinnakaruppan M, Liu J (2010) Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. Plos Genet 6(4):e1000914

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ren GQ, Xin SC, Li S, Zhong HB, Lin S (2011) Disruption of LRRK2 does not cause specific loss of dopaminergic neurons in zebrafish. Plos One 6(6):e20630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fett ME, Pilsl A, Paquet D, van Bebber F, Haass C, Tatzelt J, Schmid B, Winklhofer KF (2010) Parkin is protective against proteotoxic stress in a transgenic zebrafish model. Plos One 5(7):e11783

    Article  PubMed Central  PubMed  Google Scholar 

  17. Flinn L, Mortiboys H, Volkmann K, Koester RW, Ingham PW, Bandmann O (2009) Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Mov Disord 24:S135–S135

    Google Scholar 

  18. Lam CS, Korzh V, Strahle U (2005) Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP. Eur J Neurosci 21(6):1758–1762

    Article  PubMed  Google Scholar 

  19. Anichtchik OV, Kaslin J, Peitsaro N, Scheinin M, Panula P (2004) Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 88(2):443–453

    Article  CAS  PubMed  Google Scholar 

  20. Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26(6):857–864

    Article  CAS  PubMed  Google Scholar 

  21. Wen L, Wei W, Gu WC, Huang P, Ren X, Zhang Z, Zhu ZY, Lin S, Zhang B (2008) Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish. Dev Biol 314(1):84–92

    Article  CAS  PubMed  Google Scholar 

  22. McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Mol Brain Res 141(2):128–137

    Article  CAS  PubMed  Google Scholar 

  23. Pan TH, Li XQ, Jankovic J (2011) The association between Parkinson’s disease and melanoma. Int J Cancer 128(10):2251–2260

    Article  CAS  PubMed  Google Scholar 

  24. Fiala KH, Whetteckey J, Manyam BV (2003) Malignant melanoma and levodopa in Parkinson’s disease: causality or coincidence? Parkinsonism Relat Disord 9(6):321–327

    Article  PubMed  Google Scholar 

  25. Boissy RE, Nordlund JJ (2011) Vitiligo: current medical and scientific understanding. Giornale italiano di dermatologia e venereologia: organo ufficiale. Societa italiana di dermatologia e sifilografia 146(1):69–75

    CAS  Google Scholar 

  26. Glassman SJ (2011) Vitiligo, reactive oxygen species and T-cells. Clin Sci 120(3):99–120

    Article  CAS  PubMed  Google Scholar 

  27. Liu R, Gao X, Lu Y, Chen HL (2011) Meta-analysis of the relationship between Parkinson disease and melanoma. Neurology 76(23):2002–2009

    Article  PubMed  Google Scholar 

  28. Shi CH, Tang BS, Wang L, Lv ZY, Wang J, Luo LZ, Shen L, Jiang H, Yan XX, Pan Q, Xia K, Guo JF (2011) PLA2G6 gene mutation in autosomal recessive early-onset parkinsonism in a Chinese cohort. Neurology 77(1):75–81

    Article  PubMed  Google Scholar 

  29. Paisan-Ruiz C, Guevara R, Federoff M, Hanagasi H, Sina F, Elahi E, Schneider SA, Schwingenschuh P, Bajaj N, Emre M, Singleton AB, Hardy J, Bhatia KP, Brandner S, Lees AJ, Houlden H (2010) Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations. Move Disord: Off J Move Disord Soc 25(12):1791–1800

    Article  Google Scholar 

  30. Sina F, Shojaee S, Elahi E, Paisan-Ruiz C (2009) R632W mutation in PLA2G6 segregates with dystonia-parkinsonism in a consanguineous Iranian family. Eur J Neurol: Off J Eur Feder Neurol Soc 16(1):101–104

    Article  CAS  Google Scholar 

  31. Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW, Hardy J, Houlden H, Singleton A, Schneider SA (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65(1):19–23

    Article  PubMed  Google Scholar 

  32. Kvaskoff M, Whiteman DC, Zhao ZZ, Montgomery GW, Martin NG, Hayward NK, Duffy DL (2011) Polymorphisms in nevus-associated genes MTAP, PLA2G6, and IRF4 and the risk of invasive cutaneous melanoma. Twin Res Hum Genet: Off J Int Soc Twin Stud 14(5):422–432

    Article  Google Scholar 

  33. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, vanEeden FJM, Jiang YJ, Heisenberg CP, Kelsh RN, FurutaniSeiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, NussleinVolhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  34. Amsterdam A, Burgess S, Golling G, Chen WB, Sun ZX, Townsend K, Farrington S, Haldi M, Hopkins N (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13(20):2713–2724

    Article  CAS  PubMed  Google Scholar 

  35. Dorsky RI, Moon RT, Raible DW (1998) Control of neural crest cell fate by the Wnt signalling pathway. Nature 396(6709):370–373

    Article  CAS  PubMed  Google Scholar 

  36. Quigley IK, Parichy DM (2002) Pigment pattern formation in zebrafish: a model for developmental genetics and the evolution of form. Microsc Res Tech 58(6):442–455

    Article  CAS  PubMed  Google Scholar 

  37. Kelsh RN, Eisen JS (2000) The zebrafish colourless gene regulates development of non-ectomesenchymal neural crest derivatives. Development 127(3):515–525

    CAS  PubMed  Google Scholar 

  38. Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW (1999) nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126(17):3757–3767

    CAS  PubMed  Google Scholar 

  39. Curran K, Raible DW, Lister JA (2009) Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf. Dev Biol 332(2):408–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Cornell RA, Yemm E, Bonde G, Li W, D’Alencon C, Wegman L, Eisen J, Zahs A (2004) Touchtone promotes survival of embryonic melanophores in zebrafish. Mech Dev 121(11):1365–1376

    Article  CAS  PubMed  Google Scholar 

  41. McNeill MS, Paulsen J, Bonde G, Burnight E, Hsu MY, Cornell RA (2007) Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J Invest Dermatol 127(8):2020–2030

    Article  CAS  PubMed  Google Scholar 

  42. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411(6837):590–595

    Article  CAS  PubMed  Google Scholar 

  43. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291(5506):1043–1047

    Article  CAS  PubMed  Google Scholar 

  44. McNeill MS, Paulsen J, Bonde G, Burnight E, Hsu MY, Cornell RA (2007) Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J Invest Dermatol 127(8):2020–2030

    Article  CAS  PubMed  Google Scholar 

  45. Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM (2005) A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci USA 102(32):11510–11515

    Article  CAS  PubMed  Google Scholar 

  46. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3(1):59–69

    Article  CAS  PubMed  Google Scholar 

  47. Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp: JoVE 20:923

    PubMed  Google Scholar 

  48. Westerfield M (2000) The zebrafish book a guide for the laboratory use of zebrafish Danio (Brachydanio) rerio. ZFIN. University of Oregon, Eugene

    Google Scholar 

  49. Padilla S, Hunter DL, Padnos B, Frady S, Macphail RC (2011) Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotoxicol Teratol 33(6):674–679

    Article  PubMed  Google Scholar 

  50. Furutani-Seiki M, Jiang YJ, Brand M, Heisenberg CP, Houart C, Beuchle D, van Eeden FJ, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C (1996) Neural degeneration mutants in the zebrafish, Danio rerio. Development 123:229–239

    CAS  PubMed  Google Scholar 

  51. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  CAS  PubMed  Google Scholar 

  52. Cole LK, Ross LS (2001) Apoptosis in the developing zebrafish embryo. Dev Biol 240(1):123–142

    Article  CAS  PubMed  Google Scholar 

  53. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210(14):2526–2539

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Cornell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Decker, A., Cornell, R. (2012). Investigating Diseases of Dopaminergic Neurons and Melanocytes Using Zebrafish. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-095-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-095-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-094-6

  • Online ISBN: 978-1-62703-095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics