Skip to main content

Supervised Inference of Gene Regulatory Networks from Positive and Unlabeled Examples

  • Protocol
  • First Online:
Data Mining for Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 939))

Abstract

Elucidating the structure of gene regulatory networks (GRN), i.e., identifying which genes are under control of which transcription factors, is an important challenge to gain insight on a cell’s working mechanisms. We present SIRENE, a method to estimate a GRN from a collection of expression data. Contrary to most existing methods for GRN inference, SIRENE requires as input a list of known regulations, in addition to expression data, and implements a supervised machine-learning approach based on learning from positive and unlabeled examples to account for the lack of negative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643

    Article  PubMed  CAS  Google Scholar 

  2. Bansal M, Belcastro V, Ambesi-Impiombato A, diBernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3:78

    PubMed  Google Scholar 

  3. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22:281–285

    Article  PubMed  CAS  Google Scholar 

  4. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97(22):12182–12186

    Article  PubMed  CAS  Google Scholar 

  5. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular contexts. BMC Bioinformatics 7 Suppl 1:S7

    Google Scholar 

  6. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8

    Article  PubMed  Google Scholar 

  7. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620

    Article  PubMed  CAS  Google Scholar 

  8. Chen T, He HL, Church GM (1999) Modeling gene expression with differential equations. Pac Symp Biocomput 4:29–40

    Google Scholar 

  9. Tegner J, Yeung MKS, Hasty J, Collins JJ (2003) Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc Natl Acad Sci USA 100(10):5944–5949

    Article  PubMed  CAS  Google Scholar 

  10. Gardner TS, Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629):102–105

    Article  PubMed  CAS  Google Scholar 

  11. Chen K-C, Wang T-Y, Tseng H-H, Huang C-YF, Kao C-Y (2005) A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21(12):2883–2890

    Article  PubMed  CAS  Google Scholar 

  12. Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 23(3):377–383

    Article  PubMed  Google Scholar 

  13. Bansal M, Della Gatta G, Bernardo D (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22(7):815–822

    Article  PubMed  CAS  Google Scholar 

  14. Akutsu T, Miyano S, Kuhara S (2000) Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. J Comput Biol 7(3–4):331–343

    Article  PubMed  CAS  Google Scholar 

  15. Yamanishi Y, Vert J-P, Kanehisa M (2004) Protein network inference from multiple genomic data: a supervised approach. Bioinformatics 20:i363–i370

    Article  PubMed  CAS  Google Scholar 

  16. Vert J-P, Yamanishi Y (2005) Supervised graph inference. In: Saul LK, Weiss Y, Bottou L (eds) Advances in neural information processing systems, vol 17. MIT, Cambridge, MA, pp 1433–1440

    Google Scholar 

  17. Yamanishi Y, Vert J-P, Kanehisa M (2005) Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics 21:i468–i477

    Article  PubMed  CAS  Google Scholar 

  18. Bleakley K, Biau G, Vert J-P (2007) Supervised reconstruction of biological networks with local models. Bioinformatics 23(13):i57–i65

    Article  PubMed  CAS  Google Scholar 

  19. Mordelet F, Vert J-P (2008) SIRENE: Supervised inference of regulatory networks. Bioinformatics 24(16):i76–i82

    Article  PubMed  Google Scholar 

  20. Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin

    Google Scholar 

  21. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC (2001) Estimating the Support of a High-Dimensional Distribution. Neural Comput 13:1443–1471

    Article  PubMed  Google Scholar 

  22. Denis F, Gilleron R, Letouzey F (2005) Learning from positive and unlabeled examples. Theoret Computer Sci 348(1):70–83

    Article  Google Scholar 

  23. Scott C, Blanchard G (2009) Novelty detection: unlabeled data definitely help. In: van Dyk V, Welling M (ed) Proceedings of the twelfth international conference on artificial intelligence and statistics (AISTATS), vol 5. Clearwater Beach, Florida, pp 464–471

    Google Scholar 

  24. Manevitz LM, Yousef M (2001) One-class SVMs for document classification. J Mach Learn Res 2:139–154

    Google Scholar 

  25. Liu B, Lee WS, Yu PS, Li X (2002) Partially supervised classification of text documents. In: ICML ’02: Proceedings of the Nineteenth International Conference on Machine Learning, San Francisco, CA, USA. Morgan Kaufmann Publishers, USA, pp 387–394

    Google Scholar 

  26. Li X, Liu B (2003) Learning to classify texts using positive and unlabeled data. In: IJCAI’03: Proceedings of the 18th international joint conference on Artificial intelligence San Francisco, CA. Morgan Kaufmann Publishers, USA, pp 587–592

    Google Scholar 

  27. Liu B, Dai Y, Li X, Lee WS, Yu PS (2003) Building text classifiers using positive and unlabeled examples. In: International Conference on Data Mining, pp 179–186

    Google Scholar 

  28. Yu H, Han J, Chang KC-C (2004) PEBL: Web page classification without negative examples. IEEE Trans Knowl Data Eng 16(1):70–81

    Article  Google Scholar 

  29. Lee WS, Liu B (2003) Learning with positive and unlabeled examples using weighted logistic regression. In: Fawcett T, Mishra N (ed) Machine learning, proceedings of the twentieth international conference (ICML 2003). AAAI Press, USA, pp 448–455

    Google Scholar 

  30. Elkan C, Noto K (2008) Learning classifiers from only positive and unlabeled data. In: KDD ’08: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, USA, pp 213–220

    Google Scholar 

  31. Mordelet F, Vert J-P (2010) A bagging SVM to learn from positive and unlabeled examples. Technical Report HAL:00523336

    Google Scholar 

  32. Salgado H, Gama-Castro S, Peralta-Gil M, Díaz-Peredo E, Sánchez-Solano F, Santos-Zavaleta A, Martínez-Flores I, Jiménez-Jacinto V, Bonavides-Martínez C, Segura-Salazar J, Martínez-Antonio A, Collado-Vides J (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 34(Database issue):D394–D397

    Google Scholar 

  33. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  34. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  35. Schölkopf B, Tsuda K, Vert J-P (2004) Kernel methods in computational biology. MIT, Cambridge, MA

    Google Scholar 

  36. Vert R, Vert J-P (2006) Consistency and convergence rates of one-class SVMs and related algorithms. J Mach Learn Res 7:817–854

    Google Scholar 

  37. Mordelet F (2010) Learning from positive and unlabeled examples in biology. Ph.D. thesis, Mines ParisTech

    Google Scholar 

  38. Joachims T (1997) A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In: ICML ’97: Proceedings of the fourteenth international conference on machine learning, Nashville, Tennessee. Morgan Kaufmann Publishers, USA, pp 143–151

    Google Scholar 

  39. De Bie T, Tranchevent L-C, vanOeffelen LMM, Moreau Y (2007) Kernel-based data fusion for gene prioritization. Bioinformatics 23(13):i125–i132

    Article  PubMed  Google Scholar 

  40. Zhang K, Tsang I, Kwok J (2009) Maximum margin clustering made practical. IEEE Trans Neural Network 20(4):583–596

    Article  Google Scholar 

  41. Chang C-C, Lin C-J (2001) LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fantine Mordelet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mordelet, F., Vert, JP. (2013). Supervised Inference of Gene Regulatory Networks from Positive and Unlabeled Examples. In: Mamitsuka, H., DeLisi, C., Kanehisa, M. (eds) Data Mining for Systems Biology. Methods in Molecular Biology, vol 939. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-107-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-107-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-106-6

  • Online ISBN: 978-1-62703-107-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics